Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
~[Ru]-8. Through a systematic investigation of these 20.
Journal Name
1
Driess and H. Grützmacher, Angew. DChOeI:m10. .I1n0t3.9E/dC.9,C2C010365,1595B,
complexes and other parameters, optimized reaction
conditions applying [Ru]-2 demonstrated excellent activities for
the acceptorless dehydrogenative coupling of primary alcohols
and KOH. Accordingly, numerous aromatic and aliphatic
alcohols were efficiently transformed into the corresponding
carboxylic acids. Interestingly, this catalytic process could be
performed in open air, and no special handling or further
purification was necessary to achieve satisfactory results.
Notably, [Ru]-2 is effective for this transformation even at a low
1
854-1858.
21.
22.
23.
24.
E. Balaraman, E. Khaskin, G. Leitus and D. Milstein, Nat.
Chem., 2013, 5, 122-125.
J. H. Choi, L. E. Heim, M. Ahrens and M. H. G. Prechtl, Dalton
Trans., 2014, 43, 17248-17254.
J. Malineni, H. Keul and M. Möller, Dalton Trans., 2015, 44,
17409-17414.
Y. Li, M. Nielsen, B. Li, P. H. Dixneuf, H. Junge and M. Beller,
Green Chem., 2015, 17, 193-198.
catalyst loading of 250 ppm. In addition, a TON of up to 32800 25.
and a TOF of up to 3200 were obtained. It is worth mentioning
that these values are superior over all the literature reports
L. Zhang, D. H. Nguyen, G. Raffa, X. Trivelli, F. Capet, S. Desset,
S. Paul, F. Dumeignil and R. M. Gauvin, ChemSusChem, 2016,
9
, 1413-1423.
26.
27.
28.
29.
30.
31.
32.
33.
C. Santilli, I. S. Makarov, P. Fristrup and R. Madsen, J. Org.
Chem., 2016, 81, 9931-9938.
P. Hu, Y. Ben-David and D. Milstein, J. Am. Chem. Soc., 2016,
until now. Hopefully, this highly active complex will be of
practical value for further interesting applications.
This research was supported by the National Natural Science
Foundation of China (No. 21502062), F.V. acknowledges the
1
38, 6143-6146.
E. W. Dahl, T. Louis-Goff and N. K. Szymczak, Chem. Commun.,
017, 53, 2287-2289.
support
from
the
Tomsk
Polytechnic
University
2
Competitiveness Enhancement Program grant (VIU-2019).
Z. Dai, Q. Luo, X. Meng, R. Li, J. Zhang and T. Peng, J.
Organomet. Chem., 2017, 830, 11-18.
A. Sarbajna, I. Dutta, P. Daw, S. Dinda, S. M. W. Rahaman, A.
Sarkar and J. K. Bera, ACS Catal., 2017, 7, 2786-2790.
A. Singh, S. K. Singh, A. K. Saini, S. M. Mobin and P. Mathur,
Appl. Organomet. Chem., 2018, 32, e4574.
Y. Sawama, K. Morita, T. Yamada, S. Nagata, Y. Yabe, Y.
Monguchi and H. Sajiki, Green Chem., 2014, 16, 3439-3443.
Y. Sawama, K. Morita, S. Asai, M. Kozawa, S. Tadokoro, J.
Nakajima, Y. Monguchi and H. Sajiki, Adv. Synth. Catal., 2015,
357, 1205-1210.
K. I. Fujita, R. Tamura, Y. Tanaka, M. Yoshida, M. Onoda and
R. Yamaguchi, ACS Catal., 2017, 7, 7226-7230.
K. I. Fujita, Bull. Chem. Soc. Jap., 2019, 92, 344-351.
H. G. Ghalehshahi and R. Madsen, Chem. -Eur. J., 2017, 23,
11920-11926.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1.
B. L. Ryland and S. S. Stahl, Angew. Chem. Int. Ed., 2014, 53,
824-8838.
8
2.
L. Wu, T. Moteki, A. A. Gokhale, D. W. Flaherty and F. D. Toste, 34.
Chem, 2016, 1, 32-58.
3
4
.
.
G. Tojo and M. Fernández, Springer Ebooks, 2007.
R. Mazitschek, M. Muelbaier and A. Giannis, Angew. Chem. 36.
Int. Ed., 2002, 41, 4059-4061.
35.
5
6
7
.
.
.
H. Tohma and Y. Kita, Adv. Synth. Catal., 2004, 346, 111-124. 37.
S. Patel and B. K. Mishra, Tetrahedron, 2007, 63, 4367-4406.
G. J. ten Brink, I. W. C. E. Arends and R. A. Sheldon, Science,
D. H. Nguyen, Y. Morin, L. Zhang, X. Trivelli, F. Capet, S. Paul,
S. Desset, F. Dumeignil and R. M. Gauvin, ChemCatChem,
2017, 9, 2652-2660.
Z. Shao, Y. Wang, Y. Liu, Q. Wang, X. Fu and Q. Liu, Org. Chem.
Front., 2018, 5, 1248-1256.
F. Monda and R. Madsen, Chem. -Eur. J., 2018, 24, 17832-
17837.
H. V. Huynh, Y. Han, R. Jothibasu and J. A. Yang,
Organometallics, 2009, 28, 5395-5404.
C. Chen, M. H. Kim and S. H. Hong, Org. Chem. Front., 2015,
2, 241-247.
S. Kaufhold, L. Petermann, R. Staehle and S. Rau, Coord.
Chem. Rev., 2015, 304, 73-87.
X. Xie and H. V. Huynh, Org. Chem. Front., 2015, 2, 1598-1603.
H. Han Vinh, Chem. Rev., 2018, 118, 9457-9492.
X. J. Wu, H. J. Wang, Z. Q. Yang, X. S. Tang, Y. Yuan, W. Su, C.
Chen and F. Verpoort, Org. Chem. Front., 2019, 6, 563-570.
2
000, 287, 1636-1639.
38.
39.
40.
41.
8
9
1
.
Y. M. Yamada, T. Arakawa, H. Hocke and Y. Uozumi, Angew.
Chem. Int. Ed., 2007, 46, 704-706.
B. N. Zope, D. D. Hibbitts, M. Neurock and R. J. Davis, Science,
.
2
010, 330, 74-78.
J. Wang, C. Liu, J. Yuan and A. Lei, New J. Chem., 2013, 37,
700-1703.
L. Han, P. Xing and B. Jiang, Org. Lett., 2014, 16, 3428-3431.
X. Jiang, J. Zhang and S. Ma, J. Am. Chem. Soc., 2016, 138, 42.
344-8347.
S. M. Kim, H. Y. Shin, D. W. Kim and J. W. Yang, ChemSusChem, 43.
016, 9, 241-245.
44.
0.
1
1
1
1.
2.
8
13.
14.
15.
16.
2
M. S. Ahmed, D. S. Mannel, T. W. Root and S. S. Stahl, Org. 45.
Process Res. Dev., 2017, 21, 1388-1393.
S. Hazra, M. Deb and A. J. Elias, Green Chem., 2017, 19, 5548-
5552.
K. J. Liu, S. Jiang, L. H. Lu, L. L. Tang, S. S. Tang, H. S. Tang, Z.
Tang, W. M. He and X. Xu, Green Chem., 2018, 20, 3038-3043.
L. Zhang, X. Luo and Y. Li, J. Energy Chem., 2018, 27, 243-249.
T. Zweifel, J. V. Naubron and H. Grützmacher, Angew. Chem.
Int. Ed., 2009, 48, 559-563.
1
1
7.
8.
19.
M. Trincado, H. Grützmacher, F. Vizza and C. Bianchini, Chem.
-Eur. J., 2010, 16, 2751-2757.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins