4
62 14. L. Wang, J. Zhang, H. Wang, Y. Shao, X. Liu, Y.-Q. Wang, J. P.
1
2
3
4
5
6
7
8
9
corresponding chloroaniline without any hydrogenolysis of
the C-X bond (Table 2, entry 6).32-34 Hydrogenation of 4-
nitrophenol proceeded almost quantitatively (Table 2. entry
7). Finally, -COOCH3 and -COCH3 groups showed high
tolerance and their corresponding unsaturated amines were
obtained with significantly high selectively (Table 2, entries
8 and 9). The catalytic system developed here is an
attractive approach for the catalytic hydrogenation of
unsaturated nitro compounds, even if they contain other
63
Lewis, F.-S. Xiao, ACS Catal. 2016, 6, 4110.
64 15. C. Jiang, Z. Shang, X. Liang, ACS Catal. 2015, 5, 4814.
65 16. H. Wei, Y. Ren, A. Wang, X. Liu, X.Liu, L. Zhang, S. Miao, L.
66
67
Li, J. Liu, J. Wang, G. Wang, D. Su, T. Zhang, Chem. Sci. 2017, 8,
5126.
68 17. H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang,
69
S. Miao, J. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634.
70 18. L. Wang, E. Guan, J. Zhang, J. Yang, Y. Zhu, Y. Han, M. Yang,
71
72
C. Cen, G. Fu, B. C. Gates, F.-S. Xiao, Nat. Commun. 2018, 9,
1362.
10 reducible functional groups.
73 19. Y. Ren, H. Wei, G. Yin, L. Zhang, A. Wang, T. Zhang, Chem.
74
Commun. 2017, 53, 1969.
11
Ni-Sn alloy catalysts were prepared with various Ni/Sn
75 20. C. Berguerand, A. Yarulin, F. Cárdenas-Lizana, J. Wärna, E.
12 molar ratios by simply varying the feed ratio of the Ni and
13 Sn precursors. These catalysts were applied to the
14 hydrogenation of 4-nitrostyrene, which was used as a model
15 reaction to evaluate and optimize their performances. Ni-
16 Sn(1.5)HT673 catalyst gave the best catalytic performance
17 with full conversion of 4-nitrostyrene and a significantly
18 high selectivity towards 4-aminostyrene under the optimized
19 reaction conditions (Conv. 100%, Sel. 87%). This result
20 may be attributed to an electrostatic interaction between the
21 polar nitro group and the electropositive Sn. By lowering
22 the reaction temperature to 383 K, the selectivity was
76
77
Sulman, D. Y. Murzin, L. Kiwi-Minsker, Ind. Eng. Chem. Res.
2015, 54, 8659-8669.
78 21. A. Corma, P. Concepción, P. Serna, Angew. Chem. Int. Ed. 2007,
79
46, 7266.
80 22. A. Vicente, G. Lafaye, C. Especel, P. Marécot, C. T. Williams, J.
Catal. 2011, 283, 133-142.
82 23. A. Yarulin, C. Berguerand, A. O. Alonso, I. Yuranov, L. Kiwi-
Minsker, Catal. Today 2015, 256, 241.
84 24. H. Wen, K. Yao, Y. Zhang, Z. Zhou, A. Kirschning, Catal.
Commun. 2009, 10, 1207.
81
83
85
86 25. L.-F. Chen, Y.-W. Chen, Ind. Eng. Chem. Res. 2006, 45, 8866.
87 26. P. Serna, A. Corma, ACS Catal. 2015, 5, 7114.
88 27. Rodiansono, S. Khairi, T. Hara, N. Ichikuni, S. Shogo, Catal. Sci.
23 enhanced to 99%. Furthermore,
a wide variety of
89
Technol. 2012, 2, 2139.
24 unsaturated nitro compounds were almost quantitatively
25 transformed into their corresponding unsaturated amines,
26 demonstrating the overall potential for this efficient catalyst
27 in the chemoselective hydrogenation of substituted nitro
28 compounds.
90 28. Powder diffraction files, JCPDS-International center for
91
diffraction data (ICDD) 1997.
92 29. Y. Tan, X. Y. Liu, L. Zhang, A. Wang, L. Li, X. Pan, S. Miao, M.
93
94
Haruta, H. Wei, H. Wang, F. Wang, X. Wang, T. Zhang, Angew.
Chem. Int. Ed. 2017, 56, 2709.
95 30. F. Delbecq, P. Sautet, J. Catal. 2003, 220, 115.
29
30
96 31. M. Turáková, T. Salmi, K. Eränen, J. Wärnå, D. Y. Murzin, M.
This work was financially supported in part by JSPS
97
Králik, Appl. Catal., A 2015, 499, 66.
98 32. I. Tamiolakis, S. Fountoulaki, N. Vordos, I. N. Lykakis, G. S.
Armatas, J. Mater. Chem. A. 2013, 1, 14311.
100 33. B. Tang, W.-C. Song, E.-C. Yang, X.-J. Zhao, RSC Adv. 2017, 7,
1531.
102 34. X. Sun, A. I. Olivos-Suarez, D. Osadchii, M. J. V. Romero, F.
Kapteijin, J. Gascon, J. Catal. 2018, 357, 20.
31 KAKESHI Grant Number 15K06565 and JSPS Bilateral
32 Joint Research Project (2014-2017).
33
34 If your manuscript has Electronic Supporting Information, a
35 statement of the availability should be placed in this section
36 as follows:
37
99
101
103
38 Supporting
Information
is
available
on
39 http://dx.doi.org/10.1246/cl.******.
40 References and Notes
41 1. K. Xu, Y. Zhang, X. Chen, L. Huang, R. Zhang, J. Huang, Adv.
42
Synth. Catal. 2011, 353, 1260.
43 2. A. M. Tafesh, J. Weiguny, Chem. Rev. 1996, 96, 2035.
44 3. D. R. Petkar, B. S. Kadu, R. C. Chikate, RSC Adv. 2014, 4, 8004.
45 4. V. Popat, N. Padhiyar, Int. J. Chem. Eng. Appl. 2013, 4, 401.
46 5. N. Mei, B. Liu, Int. J. Hydrogen Energy 2016, 41, 17960.
47 6. P. Luo, K. Xu, R. Zhang, L. Huang, J. Wang, W. Xing, J. Huang,
48
Catal. Sci. Technol. 2012, 2, 301.
49 7. P. Zhou, D. Li, S. Jin, S. Chen, Z. Zhang, Int. J. Hydrogen Energy
2016, 41, 15218.
51 8. H. Wei, X. Wei, X. Yang, G. Yin, A. Wang, X. Liu, Y. Huang, T.
Zhang, Chin. J. Catal. 2015, 36, 160.
53 9. A. Corma, P. Serna, P. Concepción, J. J. Calvino, J. Am. Chem.
Soc. 2008, 130, 8748.
55 10. M. Boronat, P. Concepción, A. Corma, S. González, F. Illas, P.
Serna, J. Am. Chem. Soc. 2007, 129, 16230.
50
52
54
56
57 11. A. Corma, P. Serna, Science 2006, 313, 332.
58 12. S. Zhang, C.-R. Chang, Z.-Q. Huang, J. Li, Z. Wu, Y. Ma, Z.
59
Zhang, Y. Wang, Y. Qu, J. Am. Chem. Soc. 2016, 138, 2629.
60 13. F. Leng, I. C. Gerber, P. Lecante, S. Moldovan, M. Girleanu, M.
R. Axet, P. Serp, ACS Catal. 2016, 6, 6018.
61