LETTER
Microwave-Assisted Hydrogenations
135
(7) (a) Wada, Y.; Yin, H.; Kitamura, T.; Yanagida, S. Chem.
Lett. 2000, 632. (b) Pillai, U. R.; Sahle-Demessie, E.;
Varma, R. S. Green Chem. 2004, 6, 295.
(8) (a) Heller, E.; Lautenschläger, W.; Holzgrabe, U.
Tetrahedron Lett. 2005, 46, 1247. (b) Gustafssön, T.;
Hedenstrom, M.; Kihlberg, J. J. Org. Chem. 2006, 71, 1911.
(9) Experimental Set-up.
in reactions that require higher power levels to achieve
complete hydrogenation. Work is in progress to apply this
system to other functional group hydrogenations as well
as to extend the method to more complex hydrogenation
reactions.
All reactions were performed with a CEM Discover single
mode microwave reactor equipped with a 300 W power
source. A 10 mL fiber optic accessory was equipped with a
gas inlet to allow introduction of hydrogen gas to the
reaction vessel, and each of the reactions was performed in a
CEM 10 mL microwave reaction vial. All temperature
measurements were performed with a fiber optic probe, and
2 mL of solvent was used for each reaction to ensure ample
submersion of the fiber optic probe.
Acknowledgment
The author gratefully acknowledges Dr. Perry Pellechia from the
University of South Carolina for collecting all of the NMR data.
References and Notes
(1) For reviews on microwave chemistry, see: (a) Hayes, B. L.
Microwave Synthesis: Chemistry at the Speed of Light; CEM
Publishing: Matthews, NC, 2002. (b) Loupy, A.
Microwaves in Organic Synthesis; Wiley-VCH: Weinheim,
Germany, 2002. (c) Microwave Assisted Organic Synthesis;
Tierney, J. P.; Lidström, P., Eds.; Blackwell Publishing:
Oxford, UK, 2005. (d) Kappe, C. O.; Stadler, A.
Microwaves in Organic and Medicinal Chemistry; Wiley-
VCH: Weinheim, Germany, 2005.
(2) (a) Dayal, B.; Ertel, N. H.; Rapole, K. R.; Asgaonkar, A.;
Salen, G. Steroids 1997, 62, 451. (b) Banik, B. K.; Barakat,
K. J.; Wagle, D. R.; Manhas, M. S.; Bose, A. K. J. Org.
Chem. 1999, 64, 5746. (c) Daga, M. C.; Taddei, M.; Varchi,
G. Tetrahedron Lett. 2001, 42, 5191. (d) Berthold, H.;
Schotten, T.; Hönig, H. Synthesis 2002, 1607. (e) Stiasni,
N.; Kappe, C. O. ARKIVOC 2002, (viii), 71.
(3) (a) Desai, B.; Danks, T. N. Tetrahedron Lett. 2001, 42,
5963. (b) Danks, T. N.; Desai, B. Green Chem. 2002, 4, 179.
(4) Arcadi, A.; Cerichelli, G.; Chiarini, M.; Vico, R.; Zorzan, D.
Eur. J. Org. Chem. 2004, 3404.
(5) (a) Lutsenko, S.; Moberg, C. Tetrahedron: Asymmetry 2001,
12, 2529. (b) Reetz, M. T.; Li, X. J. Am. Chem. Soc. 2006,
128, 1044.
General Procedure.
To a solution of trans,trans-1,4-diphenyl-1,3-butadiene (1,
103 mg, 0.500 mmol) in 2.0 mL of EtOAc was added Pd/C
(10 wt%, 5 mg, 0.005 mmol). The reaction vessel was
purged three times with hydrogen, charged to 50 psi, and
then closed off to the source of hydrogen. The reaction was
heated under microwave irradiation to 80 °C with 100 W of
power and held for 5 min. Upon cooling to ambient
temperature, the reaction mixture was filtered through
Celite® and condensed to give 105 mg (>99%) of 1,4-
diphenylbutane. 1H NMR (400 MHz, CDCl3): d = 7.23–7.27
(m, 4 H), 7.14–7.17 (m, 6 H), 2.62 (t, J = 6.6 Hz, 4 H), 1.65
(dt, J = 7.2, 3.8 Hz, 4 H). 13C NMR (100 MHz, CDCl3): d =
142.66, 128.53, 128.38, 125.77, 35.93, 31.20.
Characterization data is consistent with that of commercially
available material.
(10) Whittaker, A. G.; Mingos, D. M. P. J. Chem. Soc., Dalton
Trans. 2000, 1521.
(11) Isolated yields were difficult due to the low volatility of the
products.
(12) (a) Katritzky, A. R.; Zhang, Y.; Singh, S. K.; Steel, P. J.
ARKIVOC 2003, (xv), 47. (b) Chen, J. J.; Deshpande, S. V.
Tetrahedron Lett. 2003, 44, 8873. (c) Arvela, R. K.;
Leadbeater, N. E. Org. Lett. 2005, 7, 2101.
(6) Akisanya, J.; Danks, T. N.; Garman, R. N. J. Organomet.
Chem. 2000, 603, 240.
Synlett 2007, No. 1, 131–135 © Thieme Stuttgart · New York