110
K. Liu et al. / Applied Catalysis A: General 383 (2010) 102–111
small silica particles would not aggregate, but would tightly scatter
on the surface [43,44], and some of the “pockets” would be par-
tially or totally covered (marked in Scheme 1(B)). This results in
the bad diffusion conditions for bigger molecular species. To some
extent, this reason can account for the worse catalytic stability of
0.025AT–25C–60M being worse than that of 0.025AT–25C–15M or
0.025AT–25C–30M.
5. Conclusions
MCM-49 zeolite was alkali-treated in NaOH solution under vari-
ous conditions. After the suitable alkali-treatment (in 0.025N NaOH
solution at 25 ◦C for 15–30 min), not only are the amorphous par-
ticles and crystal splinters within the MCM-49 zeolites cleared,
but also their framework and acid properties are preserved. For
the severely alkali-treated samples, mesopores were introduced by
the selective extraction of silicon on T1 and T3 sites in the MWW
framework, covering the decrease of micropore amount as well as
the damage of MCM-49 structure. In the liquid alkylation reac-
tion of benzene with ethylene, the samples alkali-treated under
mild conditions show better stability for ethylene conversion than
the parent HMCM-49, and this becomes much outstanding under
the high ethylene WHSV. Furthermore, the samples that were
alkali-treated under severe conditions also exhibit better catalytic
stability than the parent HMCM-49 unless the alkali-treatment con-
dition is too severe.
Acknowledgement
We acknowledge the National Basic Research Program of China
(Nos. 2009CB623501 and 2005CB221403) for financial support.
References
[1] A. Corma, V. Martínez-Soriab, E. Schnoevelda, J. Catal. 192 (2000) 163–173.
[2] Xinde Sun, L. Qingxia Wang, S. Xu, Liu, Catal. Lett. 94 (2004) 75–79.
[3] J.C. Cheng, T.F. Degnan, J.S. Beck, Y.Y. Huang, M. Kalyanaraman, J.A. Kowalski,
C.A. Loehr, D.N. Mazzone, Stud. Surf. Sci. Catal. 121 (1999) 53–60.
[4] C. Perego, P. Ingallina, Catal. Today 73 (2002) 3–22.
[5] J.C. Groen, L. Peffer, J. Moulijn, J. Pérez-Ramírez, Chem. Eur. J. 11 (2005)
4983–4994.
[6] G. Bellussi, G. Pazzuconi, C. Perego, G. Girotti, G. Terzoni, J. Catal. 157 (1995)
227–234.
[7] S. Lawton, A. Fung, G. Kennedy, L. Alemany, C. Chang, G. Hatzikos, D. Lissy, M.
Rubin, H. Timken, S. Steuernagel, J. Phys. Chem. 100 (1996) 3788–3798.
[8] J.M. Bennett, C.D. Chang, S.L. Lawton, M.E. Leonowicz, D.N. Lissy, M.K. Rubin, B.
Cynwyd, US Patent 5236575, 1993.
[9] G. Kennedy, S. Lawton, A. Fung, M. Rubin, S. Steuernagel, Catal. Today 49 (1999)
385–399.
[10] J. Cheng, C. Smith, D. Walsh, US Patent 5493065, 1996.
[11] Y. Tao, H. Kanoh, L. Abrams, K. Kaneko, Chem. Rev. 106 (2006) 896–910.
[12] A.H. Janssen, A.J. Koster, K.P.d. Jong, Angew. Chem. Int. Ed. 40 (2001) 1102–1104.
[13] R. Giudici, H.W. Kouwenhoven, R. Prins, Appl. Catal. A: Gen. 203 (2000)
101–110.
Fig. 7. TPO spectra of MCM-49 zeolites catalysts before and after alkali-
treatment. (A): a: HMCM-49, b: 0.2AT–75C–120M, c: 0.5AT–75C–120M and d:
0.65AT–75C–120M; (B): a: HMCM-49, b: 0.025AT–25C–30M, c: 0.1AT–25C–30M,
d: 0.025AT–25C–30M and e: 0.025AT–25C–60M.
[14] R. Dutartre, L.C. de Meorval, F. Di Renzo, D. McQueen, F. Fajula, P. Schulz, Micro-
por. Mater. 6 (1996) 311–320.
[15] J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Pérez-Ramírez, Micropor. Mesopor.
Mater. 69 (2004) 29–34.
[16] J.C. Groen, J.A. Moulijn, J. Pérez-Ramírez, J. Mater. Chem. 16 (2006) 2121–2131.
[17] Y. Tao, H. Kanoh, K. Kaneko, Adsorption 12 (2006) 309–316.
[18] Y. Li, S. Liu, Z. Zhang, S. Xie, X. Zhu, L. Xu, Appl. Catal. A: Gen. 338 (2008) 100–113.
[19] D.A. Young, Y. Linda, US Patent 3326797, 1967.
[20] G.T. Kokotailo, A.C. Rohrman, US Patent 4703025, 1987.
[21] L. Mokrzycki, B. Sulikowski, Z. Olejniczak, Catal. Lett. 127 (2009) 296–303.
[22] G.T. Kokotailo, C.A. Fyfe, The Regaku J. 12 (1995) 3–10.
[23] C.A. Emeis, J. Catal. 141 (1993) 347–354.
[24] X. Wei, P.G. Smirniotis, Micropor. Mesopor. Mater. 97 (2006) 97–106.
[25] C. Delitala, M.D. Alba, A.I. Becerro, D. Delpiano, D. Meloni, E. Musu, I. Ferino,
Micropor. Mesopor. Mater. 118 (2009) 1–10.
Scheme 1(B)), during which more acid sites in the “pockets” would
be exposed and it is helpful to the diffusion of reactant and product.
Thus the catalytic stability is improved (Fig. 6) since the “pockets”
of MWW type zeolites are the main locations for alkylation reac-
tions [1,3]. For 0.025AT–25C–3M, its alkali-treatment time is too
short to clean the amorphous particles or crystal splinters suffi-
ciently, so it has a slightly lower stability than 0.025AT–25C–15M
and 0.025AT–25C–30M. To obtain good catalytic stability for liq-
uid alkylation of benzene with ethylene, suitable conditions of
alkali-treatment for MCM-49 are as follows: 0.025N of NaOH solu-
tions, 25 ◦C of treatment temperature and 15–30 min of treatment
time. If the alkali-treatment time is further prolonged, a few amor-
phousSispecies woulddeposit backontotheMCM-49sheets. These
[26] M.A. Camblor, C. Corell, A. Corma, M.-J. Diaz-Cabanas, S. Nicolopoulos, J.M.
Gonzalez-Calbet, M. Vallet-Regi, Chem. Mater. 8 (1996) 2415–2417.
ˇ
ˇ
[27] A.v. Miltenburg, J. Pawlesa, A.M. Bouzga, N. Zilková, J. Cejka, M. Stöcker, Top.
Catal. 52 (2009) 1190–1202.
[28] A. Corma, V. Fornes, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Nature 396 (1998)
353–356.