Journal of the American Chemical Society
Article
mechanism. However, the most energetically favorable CPET is by
REFERENCES
■
hydrogen atom transfer (HAT) at the β carbon atom to form
(1) (a) Sheldon, R. A.; Kochi, J. K. Metal-catalyzed oxidations of
organic compounds; Academic Press: New York, 1981. (b) Hermans, I.;
Peeters, J.; Jacobs, P. A. Top. Catal. 2008, 48, 41−48.
(2) (a) Tinberg, C. E.; Lippard, S. J. Acc. Chem. Res. 2011, 44, 280−
288. (b) Friedle, S.; Reisner, E.; Lippard, S. J. Chem. Soc. Rev. 2010, 39,
2768−2779. (c) Rosenzweig, A. C. Biochem. Soc. Trans. 2008, 36,
1134−1137. (d) Guengerich, F. P. Arch. Biochem. Biophys. 2011, 507,
255.
(3) (a) Shilov, A. E.; Shulpin, G. B. Russ. Chem. Rev. 1987, 56, 442−
464. (b) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507−514.
(c) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fujii,
H. Science 1998, 280, 560−564. (d) Muehlhoefer, M.; Strassner, T.;
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1745−1747. (e) Lin,
M.; Shen, C.; Garcia-Zaya, E. A.; Sen, A. J. Am. Chem. Soc. 2001, 123,
1000−1001. (f) Periana, R. A.; Mironov, O.; Taube, D.; Bhalla, G.;
Jones, C. J. Science 2003, 301, 814−818.
(4) (a) Lin, M.; Hogan, T.; Sen, A. J. Am. Chem. Soc. 1997, 119,
6048−6053. (b) Bar-Nahum, I.; Khenkin, A. M.; Neumann, R. J. Am.
Chem. Soc. 2004, 126, 10236−10237.
(5) Pouy, M. J.; Milczek, E. M.; Figg, T. M.; Otten, B. M.; Prince, B.
M.; Gunnoe, T. B.; Cundari, T. R.; Groves, J. T. J. Am. Chem. Soc.
2012, 134, 12920−12923.
(6) (a) Brown, S. N.; Mayer, J. M. J. Am. Chem. Soc. 1996, 118,
12119−12133. (b) Alsters, P. L.; Boersma, J.; van Koten, G.
Organometallics 1993, 12, 1629−1635. (c) Alsters, P. L.; Teunissen,
H. T.; Boersma, J.; Spek, A. L.; van Koten, G. Organometallics 1993,
12, 4691−4696. (d) Matsunaga, P. T.; Hillhouse, G. L.; Rheingold, A.
L. J. Am. Chem. Soc. 1993, 115, 2075−2077. (e) Koo, K.; Hillhouse, G.
L.; Rheingold, A. L. Organometallics 1995, 14, 456−460.
(7) (a) Conley, B. L.; Ganesh, S. K.; Gonzales, J. M.; Tenn, W. J., III;
Young, K. J. H.; Oxgaard, J.; Goddard, W. A., III; Periana, R. A. J. Am.
Chem. Soc. 2006, 128, 9018−9019. (b) Gonzales, J. M.; Distasio, R.,
Jr.; Periana, R. A.; Goddard, W. A., III; Oxgaard, J. J. Am. Chem. Soc.
2007, 129, 15794. (c) Bischof, S. M.; Cheng, M.-J.; Nielsen, R. J.;
Gunnoe, T. B.; Goddard, W. A., III; Periana, R. A. Organometallics
2011, 30, 2079−2082.
•
Bu3SnCH2CHC2H5 , which decomposes to linear butenes and Bu3Sn•.
HAT at the α or γ carbon atoms are 7.3 and 6.4 kcal/mol less
favorable, respectively. No reasonable route to the selective formation
of 1-butanol as the only alcohol by CPET was found.
(19) A relaxed scan of the singlet potential energy surface (PES) of n-
Bu4Sn shows that the distortion of ∠C−Sn−C from 109.7 to 166.8°
yields an increase in energy of 21.0 kcal/mol.
(20) The Wiberg bond index WAB for the atom pair A, B is defined as
2
∑ijPij : i.e., the sum of squares of all density matrix elements ∑ijPij
where basis functions i and j are located on atoms A and B,
respectively. Wiberg, K. B. Tetrahedron 1968, 24, 1083−1096. For the
theoretical background of bond order indices, see: Mayer, I. J. Comput.
Chem. 2007, 28, 204−221.
(21) The APT charge on the O atom bound to SnBu3+ in the defect
+
complex [SnBu3 -(3-H2O)] is −1.23, in comparison to APT charges in
the range of −0.57 to −0.85 on other bridging oxygen atoms in 3.
(22) The calculations were only on one isomer of the
polyoxometalate; others may react somewhat differently.10,11 The
possibility of two ET reactions on the same polyoxometalate molecule
is also a possibility that was not investigated.
(23) A previous report on the anaerobic oxidation of tetraalkyltin
compounds with iridium(IV) or iron(III) complexes12a also suggests
that the initially formed R4Sn•+ is cleaved but yielded R3Sn+X− and
−
RX, where X is an anion such as Cl− or ClO4 .
(24) Hirao, H.; Kumar, D.; Chen, H.; Neumann, R.; Shaik, S. J. Phys.
Chem. C 2007, 111, 7711−7719.
(25) Gao, S.; Moffat, J. B. Catal. Lett. 1996, 42, 105−111.
(26) Snir, O.; Wang, Y.; Tuckerman, M. E.; Geletii, Y. V.; Weinstock,
I. A. J. Am. Chem. Soc. 2010, 132, 11678−11691.
(27) Neumann, R.; Levin, M. J. Am. Chem. Soc. 1992, 114, 7278−
7286.
(28) (a) Kohn, W.; Sham, L. J. Phys. Rev. A 1965, 140, 1133−1138.
(b) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and
Molecules; Oxford University Press: New York, 1970; p 230.
(29) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865−3868.
(30) (a) Jensen, F. J. Chem. Phys. 2001, 115, 9113−9125. (b) Jensen,
F. J. Chem. Phys. 2002, 116, 7372−7379.
(31) Dolg, M. In Modern Methods and Algorithms of Quantum
(8) (a) Khenkin, A. M.; Neumann, R. Angew. Chem., Int. Ed. 2000,
39, 4088−4090. (b) Khenkin, A. M.; Weiner, L.; Wang, Y.; Neumann,
R. J. Am. Chem. Soc. 2001, 123, 8531−8542.
(9) Khenkin, A. M.; Neumann, R. J. Am. Chem. Soc. 2008, 130,
11876−11877.
(10) (a) Neumann, R. Inorg. Chem. 2010, 49, 3594−3601.
(b) Neumann, R.; Khenkin, A. M. Chem. Commun. 2006, 2529−2538.
(11) Altenau, J. J.; Pope, M. T.; Prados, R. A.; So, H. Inorg. Chem.
1975, 14, 417−421.
Chemistry; Grotendorst, J., Ed.; NIC: Julich, Germany, 2000; Vol. 1, pp
̈
479−508.
(32) Martin, J. M. L.; Sundermann, A. J. Chem. Phys. 2001, 114,
3408−3420.
(33) Peterson, K. A.; Figgen, D.; Goll, E.; Stoll, H.; Dolg, M. J. Chem.
Phys. 2003, 119, 11113−11123.
(12) (a) Goldberg, H.; Kaminker, I.; Goldfarb, D.; Neumann, R.
Inorg. Chem. 2009, 48, 7947−7952. (b) Kaminker, I.; Goldberg, H.;
Neumann, R.; Goldfarb, D. Chem. Eur. J. 2010, 16, 10014−10020.
(13) (a) Wong, C. L.; Kochi, J. K. J. Am. Chem. Soc. 1979, 101,
5593−5603. See also research on oxidation of tin hydrides and
formation of tin benzoates: (b) Wong, C. L.; Klinger, R. J.; Kochi, J. K.
Inorg. Chem. 1980, 19, 423−430. (c) Xu, H. L.; Yin, H. D.; Gao, Z. J.;
Li, G. J. Organomet. Chem. 2006, 691, 3331−3335.
(34) (a) Dunlap, B. I. J. Chem. Phys. 1983, 78, 3140−3142.
(b) Dunlap, B. I. J. Mol. Struct. (THEOCHEM) 2000, 529, 37−40.
(c) Nadykto, A. B.; Dua, H.; Yu, F. Vib. Spectrosc. 2007, 44, 286−296.
(35) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101.
(36) (a) Jensen, F. J. Chem. Phys. 2002, 117, 9234−9240. (b) Jensen,
F. J. Chem. Phys. 2003, 118, 2459−2463.
(37) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys.
2002, 117, 43−54.
(14) 1-Butanol: 13C NMR δ 62.5, 34.9, 19.3, 13.9 ppm; H NMR δ
1
(38) (a) Klamt, A.; Schurmann, G. J. Chem. Soc., Perkin Trans. 2
̈
3.65 (t, 2H), 1.32 (m, 2H), 0.94 (m, 2H), 0.85 (t, 3H) ppm. (n-
Bu3Sn)2O: 13C NMR 29.8, 28.1, 19.3, 13.7 ppm; 1H NMR δ 1.65 (m,
2H), 1.37 (m, 4H), 0.95 (t, 3H) ppm.
1993, 799−805. (b) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 112,
1995−2001.
(39) (a) Grimme, S. J. Comput. Chem. 2006, 27, 1787−1799. See
also: (b) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9,
3397−3406. (c) Schwabe, T.; Grimme, S. Acc. Chem. Res. 2008, 41,
569−579.
(15) H4PVMo11O40 was used because it is less susceptible to
fragmentation under ESI conditions in comparison to H5PV2Mo10O40
yet has similar reactivity (Table S1, Supporting Information).
(16) (a) Efremenko, I.; Neumann, R. J. Am. Chem. Soc. 2012, 134,
20669−20680. (b) Efremenko, I.; Neumann, R. J. Phys. Chem. A 2011,
115, 4811−4826.
̀
(40) Karton, A.; Tarnopolsky, A.; Lamere, J.-.F.; Schatz, G. C.;
Martin, J. M. L. J. Phys. Chem. A 2008, 112, 12868−12886.
(41) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,
899−926.
(17) H5PV2Mo10O40 is a mixture of five isomers that are inseparable.
The 1,2-H5PV2Mo10O40 isomer is known to be active in oxygen
transfer.10a,11
(18) A reviewer noted that, given a measured ΔG⧧ = 23.6 kcal/
323
mol, the ΔG343 value for CPET of 16.1 kcal/mol does not rule out that
19310
dx.doi.org/10.1021/ja409559h | J. Am. Chem. Soc. 2013, 135, 19304−19310