Organic Letters
Letter
A. J.; Hollis, T. K.; Reilly, S. W. Homobimetallic Rhodium NHC
Complexes as Versatile Catalysts for Hydrosilylation of a Multitude of
Substrates in the Presence of Ambient Air. Organometallics 2013, 32,
6248−6256. (g) Gandhamsetty, N.; Park, J.; Jeong, J.; Park, S.-W.;
Park, S.; Chang, S. Chemoselective Silylative Reduction of
Conjugated Nitriles under Metal-Free Catalytic Conditions: β-Silyl
Amines and Enamines. Angew. Chem., Int. Ed. 2015, 54, 6832−6836.
(h) Gandhamsetty, N.; Jeong, J.; Park, J.; Park, S.; Chang, S. Boron-
Catalyzed Silylative Reduction of Nitriles in Accessing Primary
Amines and Imines. J. Org. Chem. 2015, 80, 7281−7287. (i) Geri, J.
B.; Szymczak, N. K. A Proton-Switchable Bifunctional Ruthenium
Complex That Catalyzes Nitrile Hydroboration. J. Am. Chem. Soc.
2015, 137, 12808−12814.
hydrogenation of nitriles. J. Org. Chem. 1991, 56, 452−454.
(b) Rajesh, K.; Dudle, B.; Blacque, O.; Berke, H. Homogeneous
Hydrogenations of Nitriles Catalyzed by Rhenium Complexes. Adv.
Synth. Catal. 2011, 353, 1479−1484. (c) Saha, S.; Kaur, M.; Singh, K.;
Bera, J. K. Selective hydrogenation of nitriles to secondary amines
catalyzed by a pyridyl-functionalized and alkenyl-tethered NHC-
Ru(II) complex. J. Organomet. Chem. 2016, 812, 87−94.
(7) Chin, C. S.; Lee, B. Hydrogenation of nitriles with iridium-
triphenylphosphine complexes. Catal. Lett. 1992, 14, 135−140.
(8) Zerecero-Silva, P.; Jimenez-Solar, I.; Crestani, M. G.; Arevalo, A.;
Barrios-Francisco, R.; Garcia, J. J. Catalytic hydrogenation of aromatic
nitriles and dinitriles with nickel compounds. Appl. Catal., A 2009,
363, 230−234.
(9) Chakraborty, S.; Berke, H. Homogeneous Hydrogenation of
Nitriles Catalyzed by Molybdenum and Tungsten Amides. ACS Catal.
2014, 4, 2191−2194.
(4) (a) Nishimura, S. Handbook of Heterogeneous Catalytic
Hydrogenation for Organic Synthesis; Wiley, 2001; p 784. (b) Blaser,
H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M.
Selective hydrogenation for fine chemicals: Recent trends and new
developments. Adv. Synth. Catal. 2003, 345, 103−151. (c) Hegedus,
L.; Mathe, T. Selective heterogeneous catalytic hydrogenation of
nitriles to primary amines in liquid phase. Appl. Catal., A 2005, 296,
209−215.
(10) Reguillo, R.; Grellier, M.; Vautravers, N.; Vendier, L.; Sabo-
Etienne, S. Ruthenium-Catalyzed Hydrogenation of Nitriles: Insights
into the Mechanism. J. Am. Chem. Soc. 2010, 132, 7854−7855.
(11) Chakraborty, S.; Milstein, D. Selective Hydrogenation of
Nitriles to Secondary Imines Catalyzed by an Iron Pincer Complex.
ACS Catal. 2017, 7, 3968−3972.
̈
(5) (a) Gunanathan, C.; Holscher, M.; Leitner, W. Reduction of
Nitriles to Amines with H2 Catalyzed by Nonclassical Ruthenium
Hydrides−Water-Promoted Selectivity for Primary Amines and
Mechanistic Investigations. Eur. J. Inorg. Chem. 2011, 2011, 3381−
3386. (b) Bornschein, C.; Werkmeister, S.; Wendt, B.; Jiao, H.;
Alberico, E.; Baumann, W.; Junge, H.; Junge, K.; Beller, M. Mild and
selective hydrogenation of aromatic and aliphatic(di)nitriles with a
well-defined iron pincer complex. Nat. Commun. 2014, 5, 4111.
(c) Choi, J.-H.; Prechtl, M. H. G. Tuneable Hydrogenation of Nitriles
into Imines or Amines with a Ruthenium Pincer Complex under Mild
Conditions. ChemCatChem 2015, 7, 1023−1028. (d) Neumann, J.;
Bornschein, C.; Jiao, H.; Junge, K.; Beller, M. Hydrogenation of
Aliphatic and Aromatic Nitriles Using a Defined Ruthenium PNP
Pincer Catalyst. Eur. J. Org. Chem. 2015, 2015, 5944−5948.
(e) Mukherjee, A.; Srimani, D.; Chakraborty, S.; Ben-David, Y.;
Milstein, D. Selective Hydrogenation of Nitriles to Primary Amines
Catalyzed by a Cobalt Pincer Complex. J. Am. Chem. Soc. 2015, 137,
8888−8891. (f) Lange, S.; Elangovan, S.; Cordes, C.; Spannenberg,
A.; Jiao, H.; Junge, H.; Bachmann, S.; Scalone, M.; Topf, C.; Junge,
K.; Beller, M. Selective catalytic hydrogenation of nitriles to primary
amines using iron pincer complexes. Catal. Sci. Technol. 2016, 6,
4768−4772. (g) Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.;
Spannenberg, A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M.
Selective Catalytic Hydrogenations of Nitriles, Ketones, and
Aldehydes by Well-Defined Manganese Pincer Complexes. J. Am.
Chem. Soc. 2016, 138, 8809−8814. (h) Adam, R.; Bheeter, C. B.;
Jackstell, R.; Beller, M. A Mild and Base-Free Protocol for the
Ruthenium-Catalyzed Hydrogenation of Aliphatic and Aromatic
Nitriles with Tridentate Phosphine Ligands. ChemCatChem 2016, 8,
1329−1334. (i) Adam, R.; Alberico, E.; Baumann, W.; Drexler, H.-J.;
Jackstell, R.; Junge, H.; Beller, M. NNP-Type Pincer Imidazolylphos-
phine Ruthenium Complexes: Efficient Base-Free Hydrogenation of
Aromatic and Aliphatic Nitriles under Mild Conditions. Chem. - Eur. J.
2016, 22, 4991−5002. (j) Chakraborty, S.; Leitus, G.; Milstein, D.
Selective hydrogenation of nitriles to primary amines catalyzed by a
novel iron complex. Chem. Commun. 2016, 52, 1812−1815.
(k) Tokmic, K.; Jackson, B. J.; Salazar, A.; Woods, T. J.; Fout, A.
R. Cobalt-Catalyzed and Lewis Acid-Assisted Nitrile Hydrogenation
to Primary Amines: A Combined Effort. J. Am. Chem. Soc. 2017, 139,
13554−13561. (l) Adam, R.; Bheeter, C. B.; Cabrero-Antonino, J. R.;
Junge, K.; Jackstell, R.; Beller, M. Selective Hydrogenation of Nitriles
to Primary Amines by using a Cobalt Phosphine Catalyst.
ChemSusChem 2017, 10, 842−846. (m) Mukherjee, A.; Srimani, D.;
Ben-David, Y.; Milstein, D. Low-Pressure Hydrogenation of Nitriles
to Primary Amines Catalyzed by Ruthenium Pincer Complexes. Scope
and mechanism. ChemCatChem 2017, 9, 559−563.
(12) (a) Pellissier, H.; Clavier, H. Enantioselective Cobalt-Catalyzed
Transformations. Chem. Rev. 2014, 114, 2775−2823. (b) Chirik, P. J.
Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with
Both Redox-Active and Strong Field Ligands. Acc. Chem. Res. 2015,
48, 1687−1695. (c) Sun, J.; Deng, L. Cobalt Complex-Catalyzed
Hydrosilylation of Alkenes and Alkynes. ACS Catal. 2016, 6, 290−
300. (d) Renaud, J.-L.; Gaillard, S. Recent Advances in Iron- and
Cobalt-Complex-Catalyzed Tandem/Consecutive Processes Involving
Hydrogenation. Synthesis 2016, 48, 3659−3683. (e) Moselage, M.; Li,
J.; Ackermann, L. Cobalt-Catalyzed C-H Activation. ACS Catal. 2016,
6, 498−525. (f) Shao, Z.; Fu, S.; Wei, M.; Zhou, S.; Liu, Q. Mild and
Selective Cobalt-Catalyzed Chemodivergent Transfer Hydrogenation
of Nitriles. Angew. Chem., Int. Ed. 2016, 55, 14653−14657. (g) Du, X.;
Huang, Z. Advances in Base-Metal-Catalyzed Alkene Hydrosilylation.
ACS Catal. 2017, 7, 1227−1243. (h) Usman, M.; Ren, Z.-H.; Wang,
Y.-Y.; Guan, Z.-H. Recent Developments in Cobalt Catalyzed
Carbon-Carbon and Carbon-Heteroatom Bond Formation via C-H
Bond Functionalization. Synthesis 2017, 49, 1419−1443. (i) Kallmeier,
F.; Kempe, R. Manganese Complexes for (De)Hydrogenation
Catalysis: A Comparison to Cobalt and Iron Catalysts. Angew.
Chem., Int. Ed. 2018, 57, 46−60.
(13) In Fout and co-workers’ report, the formation of imines as side
products was mentioned yet with no details on selectivity and yield.
See ref 5k.
(14) (a) Chen, T.; Li, H.; Qu, S.; Zheng, B.; He, L.; Lai, Z.; Wang,
Z.-X.; Huang, K.-W. Hydrogenation of Esters Catalyzed by
Ruthenium PN3-Pincer Complexes Containing an Aminophosphine
Arm. Organometallics 2014, 33, 4152−4155. (b) Li, H.; Zheng, B.;
Huang, K.-W. A new class of PN3-pincer ligands for metal−ligand
cooperative catalysis. Coord. Chem. Rev. 2015, 293−294, 116−138.
and references therein (c) Pan, Y.; Pan, C.-L.; Zhang, Y.; Li, H.; Min,
S.; Guo, X.; Zheng, B.; Chen, H.; Anders, A.; Lai, Z.; Zheng, J.;
Huang, K.-W. Selective Hydrogen Generation from Formic Acid with
Well-Defined Complexes of Ruthenium and Phosphorus−Nitrogen
PN3-Pincer Ligand. Chem. - Asian J. 2016, 11, 1357−1360. (d) Li, H.;
Wang, Y.; Lai, Z.; Huang, K.-W. Selective Catalytic Hydrogenation of
Arenols by a Well-Defined Complex of Ruthenium and Phosphorus−
Nitrogen PN3−Pincer Ligand Containing a Phenanthroline Back-
bone. ACS Catal. 2017, 7, 4446−4450. (e) Gonca̧ lves, T. P.; Huang,
K.-W. Metal−Ligand Cooperative Reactivity in the (Pseudo)-
Dearomatized PNx(P) Systems: The Influence of the Zwitterionic
Form in Dearomatized Pincer Complexes. J. Am. Chem. Soc. 2017,
139, 13442−13449. (f) Guan, C.; Pan, Y.; Ang, E. P. L.; Hu, J.; Yao,
C.; Huang, M.-H.; Li, H.; Lai, Z.; Huang, K.-W. Conversion of CO2
from air into formate using amines and phosphorus-nitrogen PN3P-
Ru(ii) pincer complexes. Green Chem. 2018, 20, 4201.
(6) (a) Galan, A.; De Mendoza, J.; Prados, P.; Rojo, J.; Echavarren,
A. M. Synthesis of secondary amines by rhodium catalyzed
E
Org. Lett. XXXX, XXX, XXX−XXX