www.afm-journal.de
www.MaterialsViews.com
Characterizations: The structural investigation and surface
morphology analysis of GNS15 was carried out using HR-TEM (JEOL,
JSM-2100F) with an acceleration voltage of 200 kV. The XPS analysis
was performed using PHI Quantera SXM (ULVAC Inc.) to measure
the binding energies of carbon and oxygen. A confocal Raman
spectrometer (Renishaw inVia) was used to collect Raman spectra
[14] J. Senthilnathan, K. Sanjeeva Rao, M. Yoshimura, J. Mater. Chem. A
2014, 2, 3332.
[15] S. Stankovich, S. Stankovich, D. A. Dikin, G. H. B. Dommett,
K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Pine, S. T. Nguyen,
R. S. Ruoff, Nature 2006, 442, 282.
[
16] D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner,
–
2
(
laser wavelength of 633 nm and laser power of 8 mW cm ). The Si
G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, R. S. Ruoff, Nature
−
1
peak at 520 cm was used as a reference for wavenumber calibration.
2
007, 448, 457.
−
1
FT-IR spectra in a range of 400 to 4000 cm were collected using an
FT-IR spectrometer (VERTEX 70, Bruker, Germany). Samples used for
TEM measurements were prepared by drop-casting onto lacey-carbon-
coated Cu grids followed by an drying step (60 °C for 30 min). The
samples for Raman and XPS spectroscopy were prepared by drop-
casting onto a glass substrate followed by an drying step (60 °C for
[
[
17] V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson,
R. B. Kaner, Y. Yang, Nano Lett. 2009, 9, 1949.
18] H. Hu, Z. Zhao, W. Wan, Y. Gogotsi, J. Qiu, Adv. Mater. 2013, 25,
2
219.
[
[
19] H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, Carbon 2012, 50, 3267.
20] O. M. Marago, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi,
M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti,
V. Nicolosi, A. C. Ferrari, ACS Nano 2010, 4, 7515.
3
0 min). The KBr disc method was used for the preparation of FT-IR
samples. The concentration of the GNS dispersion was analyzed
as follows: 100 µL of GNS dispersion in a pre-weighted differential
scanning calorimetry (DSC) crucible was evaporated under vacuum
[
[
[
[
[
[
21] X. Wang, L. Jiao, K. Sheng, C. Li, L. Dai, G. Shi, Sci. Rep. 2013, 3,
1996.
22] J. Senthilnathan, Y.-F. Liu, K. Sanjeeva Rao, M. Yoshimura, Sci. Rep.
(
50 °C, 3 days). The final weight of dry GNS was calculated.
2
014, 4, 4395.
23] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, Adv. Funct. Mater.
008, 18, 1518.
24] J. Lu, J.-X. Yang, J. Wang, A. Lim, S. Wang, K. P. Loh, ACS Nano
009, 3, 2367.
25] M. Mao, M. Wang, J. Hu, G. Lei, S. Chen, H. Liu, Chem. Commun.
013, 49, 5301.
Supporting Information
2
Supporting Information is available from the Wiley Online Library or
from the author.
2
2
26] Z. Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli,
Acknowledgements
V. Morandi, A. Zanelli, V. Bellani, V. Palermo, Adv. Funct. Mater.
2
013, 23, 4684.
The authors are grateful to Prof. Yury Gogotsi, Department of Materials
Science and Engineering and A.J. Drexel Nanotechnology Institute,
Drexel University for valuable discussion. The authors gratefully
acknowledge professors Jiunn-Der Liao, Jyh-Ming Ting, and Mario
Hofmann, Dr. Stuart Thomas, Dr. Yung-Fang Liu, Dr. Wan-Hsien Lin,
and research student Pei-Ru So for their support. The research project
was supported by a grant from National Cheng Kung University, Taiwan.
[
[
[
27] G. M. Morales, P. Schifani, G. Ellis, C. Ballesteros, G. Martínez,
C. Barbero, H. J. Salavagione, Carbon 2011, 49, 2809.
28] J. Liu, C. K. Poh, D. Zhan, L. Lai, S. H. Lim, L. Wang, X. Liu,
N. G. Sahoo, C. Li, Z. Shen, J. Lin, Nano Energy 2013, 2, 377.
29] J. Wang, K. K. Manga, Q. Bao, K. P. Loh, J. Am. Chem. Soc. 2011,
1
33, 8888.
[
[
30] Y. L. Zhong, T. M. Swager, J. Am. Chem. Soc. 2012, 134, 17896.
31] K. Sanjeeva Rao, J. Senthilnathan, Y.-F. Liu, M. Yoshimura, Sci. Rep.
Received: August 3, 2014
Revised: October 19, 2014
Published online:
2
014, 4, 4237.
32] C.-Y. Su, A.-Y. Lu, Y. Xu, F.-R. Chen, A. Khlobystov, L.-J. Li, ACS Nano
011, 5, 2332.
[
[
2
33] M. Alanyalıoglu, J. J. Segura, J. Or o´ -Sol e` , N. Casa n˜ -Pastor, Carbon
2012, 50, 142.
[1] M. I. Katsnelson, K. S. Novoselov, A. K. Geim, Nat. Phys. 2006, 2, 620.
[
2] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer,
U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science
[34] H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, W. Zhang, J. Mater.
Chem. 2012, 22, 10452.
2
007, 315, 1379.
[35] L.-L. Dong, L. He, G.-H. Tao, C. Hu, RSC Adv. 2013, 3, 4806.
[36] G. H. Tao, L. He, N. Sun, Y. Kou, Chem. Commun. 2005, 28, 3562.
[37] G.-H. Tao, L. He, W.-S. Liu, L. Xu, W. Xiong, T. Wang, Y. Kou,
Green Chem. 2006, 8, 639.
[38] M. Yoshimura, J. Mater. Sci. 2006, 41, 1299.
[39] S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, J. H. Lee, J. Mater. Chem.
2012, 22, 9696.
[40] C. Ferrari, J. Robertson, Phys. Rev. B 2000, 61, 14095.
[41] L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete,
R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala,
A. C. Ferrari, Nano Lett. 2011, 11, 3190.
[
3] F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, Y. R. Shen,
Science 2008, 320, 206.
4] C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
5] R. S. Ruoff, MRS Bulletin 2012, 37, 1314.
6] R. Hawaldar, P. Merino, M. R. Correia, I. Bdikin, J. Grácio,
J. Méndez, J. A. Martín-Gago, M. K. Singh, Sci. Rep. 2012, 2, 682.
7] J.-C. Yoon, J.-S. Lee, S.-I. Kim, K.-H. Kim, J.-H. Jang, Sci. Rep. 2013,
[
[
[
[
[
3
, 1788.
8] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo,
A. C. Ferrari, Mater. Today 2012, 15, 564.
[
9] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab,
K. Kim, Nature 2012, 490, 192.
[42] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri,
F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth,
A. K. Geim, Phys. Rev. Lett. 2006, 97, 187401.
[
10] T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera,
F. Bonaccorso, A. C. Ferrari, Phys. Status Solidi B 2010, 247,
[43] Y. Li, M. V. Zijll, S. Chiang, N. Pan, J. Power Sources 2011, 196, 6003.
[44] S. Park, J. An, R. D. Piner, I. Jung, D. Yang, A. Velamakanni,
S. T. Nguyen, R. S. Ruoff, Chem. Mater. 2008, 20, 6592.
[45] S. Yumitori, J. Mater. Sci. 2000, 35, 139.
2
953.
11] V. Chabot, B. Kim, B. Sloper, C. Tzoganakis, A. Yu, Sci. Rep. 2013, 3,
378.
[
1
[
[
12] S. Park, R. S. Ruoff, Nat. Nanotechnol. 2009, 4, 217.
13] C.-H. Zhu, Y. Lu, J. Peng, J. Chen, S.-H. Yu, Adv. Funct. Mater. 2012,
[46] G.-X. Zhu, X.-W. Wei, S. Jiang, J. Mater. Chem. 2007, 17, 2301.
[47] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
2
2, 4017.
Adv. Funct. Mater. 2014,
DOI: 10.1002/adfm.201402621
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
wileyonlinelibrary.com
7