ChemComm
COMMUNICATION
DOI: 10.1039/C C00061K
Jou5Crnal Name
NPs and GQDs with H O oxidize the reactant under alkali 9. J. Zakzeskia, A. D˛ebczak, P. C. A. Bruijnincx and B. M.
2
2
condition, thus the reaction is faster. The excellent selectivity
and conversion efficiency of the oxidation catalyzed by
Au/GQDs are contributed by each components and their
interaction.
Weckhuysen, Appl. Catal. A-Gen., 2011, 394, 79ꢀ85.
0. X. Yu, Y. Huo, J. Yang, S. Chang, Y. Ma and W. Huang, Appl. Surf.
Sci., 2013, 280, 450ꢀ 455.
1
1
3
1
1. C. D. Pina, E. Falletta and M. Rossi, Chem. Soc. Rev., 2012, 41, 350ꢀ
69.
Conclusions
2. S. Demirel, P. Kern, M. Lucas and P. Claus, Catal. Today, 2007, 122
,
In summary, we demonstrated that using the asꢀsynthesized
Au/GQDs composites as catalysts, VA can be oxidized into 292ꢀ300.
veratryl aldehyde or veratric acid by H O2 with excellent 13. E. G. Rodrigues, S. A. C. Carabineiro, J. J. Delgado, X. Chen, M. F.
2
selectivity and conversion efficiency through tuning the pH and
reaction time. Inhibition reactions and EPR trapping
experiments show that under acidic condition, singlet oxygen
species that generated by GQDs with H O play a critical role;
while under alkali condition, both GQDs and Au NPs
contributed to the oxidation using superoxide anion and trace
R. Pereira and J. J. M. Órfão, J. Catal., 2012, 285, 83ꢀ91.
1
1
1
4. J. L. Figueiredo and M. F. R. Pereira, Catal. Today, 2010, 150, 2ꢀ7.
5. T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037ꢀ3058.
6. S. Carrettin, P. McMorn, P. Johnston, K. Griffin, C. J. Kiely and G. J.
2
2
Hutchings, Phys. Chem. Chem. Phys., 2003,
5 1329ꢀ1336.
singlet oxygen species generated by GQDs and Au with H O . 17. D. I. Enache, D. W. Knight and G. J. Hutchings, Catal. Lett., 2005,
2
2
In addition, the large aromatic basal plane of GQDs in the
Au/GQDs composite makes it as an efficient catalyst
selectively for aromatic alcohols’ oxidation. With the excellent
catalytic performance and stability, we envisage that Au/GQDs
could find potential applications in alcohols oxidation, such as
lignin oxidation.
1
03, 43ꢀ52.
1
8. X. Zhou, Z. Tian, J. Li, H. Ruan, Y. Ma, Z. Yang and Y. Qu,
Nanoscale, 2014,
6, 2603ꢀ2607.
1
9. D. Pan, C. Xi, Z. Li, L. Wang, Z. Chen, B. Lu and M. Wu, J. Mater.
Chem. A, 2013, 1, 3551ꢀ3555.
2
0. X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S.
Guo and J. Zhang, ACS Nano, 2012, , 6592ꢀ6599.
6
Notes and references
*
Corresponding authors
21. X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang and S. Guo, J. Phys.
Chem. C, 2011, 115, 11957ꢀ11961.
a
Department of Electronic Engineering, School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong University, Shanghai
2
2. X. Ji, X. Song, J. Li, Y. Bai, W. Yang and X. Peng, J. Am. Chem.
2
00240, P. R. China.
b
State Key Laboratory of Bioreactor Engineering, Shanghai Key Soc., 2007, 129, 13939ꢀ13948.
Laboratory of New Drug Design, School of Pharmacy, East China
University of Science and Technology, Shanghai, 200237, P. R. China.
Email: swguo@sjtu.edu.cn; jyzhang@ecust.edu.cn.
2
3. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem.
Commun., 2010, 46, 1112ꢀ1114.
2
4. G. I. Panoutsopoulos and C. Beedham, Acta Biochim. Pol., 2004, 51
,
Electronic Supplementary Information (ESI) available: Experimental 649ꢀ663.
procedures, additional TEM, Raman, FTꢀIR, XPS data of the Au/GQDs,
UV and EPR spectra of the reaction product and reaction intermediates
are included in the supporting information. See DOI: 10.1039/c000000x/
2
2
2
5. J. Zhu, J. L. Figueiredo and J. L. Faria, Catal. Commun., 2008, 9
,
395ꢀ2397.
6. L. Yan, T. Zhang, W. Lei, Q. Xu, X. Zhou, P. Xu, Y. Wang and G.
Liu, Catal. Today, 2014, 224, 140ꢀ146.
7. S. K. Klitgaard, A. T. D. Riva, S. Helveg, R. M. Werchmeister and C.
Acknowledgements
2
This research was carried out with financial support from the National
Science Foundation of China (No. 11374205), the state key laboratory of H. Christensen, Catal. Lett., 2008, 126, 213ꢀ217.
bioreactor engineering (No. 2060204), 111 Project (No. B07023), the
Shanghai Committee of Science and Technology (Nos. 11DZ2260600
and 12nm0503500), national “973 Program” of China (No.
2
8. J. Zhu, S. A. C. Carabineiro, D. Shan, J. L. Faria, Y. Zhu and J. L.
Figueiredo, J. Catal., 2010, 274, 207ꢀ214.
2
2
014CB260411), and national “863” Program of China (No. 29. Y. Zhang, C. Wu, X. Zhou, X. Wu, Y. Yang, H. Wu, S. Guo and J.
012AA022603).
Zhang, Nanoscale, 2013, 5, 1816ꢀ1819.
3
0. D. M. Wang, Y. Zhang, L. L. Zheng, X. X. Yang, Y. Wang and C. Z.
1
. J. Zakzeski, P. C. A. Bruijnincx and B. M. Weckhuysen, Green
Huang, J. Phys. Chem. C, 2012, 116, 21622ꢀ21628.
Chem., 2011, 13, 671ꢀ680.
H. Fan, Y. Yang, J. Song, G. Ding, Congyi Wu, G. Yang and B. Han,
Green Chem., 2014, 16, 600ꢀ604.
K. Kervinen, H. Korpi, M. Leskelä and T. Repo, J. Mol. Catal. A-
Chem., 2003, 203, 9ꢀ19.
M. DíazꢀGonzález, T. Vidal and T. Tzanov, Appl. Microbiol.
Biotechnol., 2011, 89, 1693ꢀ1700.
3
3
8
3
1. W. R. Haag and J. Hoigne, Environ. Sci. Technol., 1986, 20, 341ꢀ348.
2
.
2. r. Edwin Welles Kellogg and I. Fridovich, J. Biol. Chem., 1975, 250
,
812ꢀ8817.
3
.
3. B. Zheng, C. Wang, X. Xin, F. Liu, X. Zhou, J. Zhang and S. Guo, J.
Phys. Chem. C, 2014, 118, 7637ꢀ7642.
4. Y. Yao, Q. Fu, Y. Y. Zhang, X. Weng, H. Li, M. Chen, L. Jin, A.
4
.
3
Dong, R. Mu, P. Jiang, L. Liu, H. Bluhm, Z. Liu, S. B. Zhang and X.
5
6
7
. W. Zhu and W. T. Ford, J. Mol. Catal., 1993, 78, 367ꢀ378.
. F. Cui and D. Dolphin, Can. J. Chem., 1992, 70, 2314ꢀ2318.
Bao, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 17023ꢀ17028.
3
1
3
1
5. Z. Liu, J. T. Robinson, X. Sun and H. Dai, J. Am. Chem. Soc., 2008,
.
K. Kervinen, M. Allmendinger, M. Leskela¨, T. Repo and B. Rieger,
, 4450ꢀ4454.
V. Sippola, O. Krause and T. Vuorinen, J. Wood Chem. Technol.,
30, 10876ꢀ10877.
Phys. Chem. Chem. Phys., 2003,
5
6. G. Wu, X. Wang, N. Guan and L. Li, Appl. Catal. B-Environ., 2013,
36-137, 177ꢀ185.
8
2
.
004, 24, 323ꢀ340.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012