A Simple Method for Epoxidation of
Olefins Using Sodium Chlorite as an
Oxidant without a Catalyst
ment of redox active tungsten-containing-polyoxometa-
late-catalyzed reactions with hydrogen peroxide as the
oxidant. Meanwhile, several interesting small-organic-
4
molecule-catalyzed5 epoxidation reactions have been
developed, with ketone- and amine-catalyzed reactions
being typical examples. On the other hand, a more
traditional and still currently used way to synthesize
racemic epoxides is the treatment of olefins with a
stoichiometric amount of peracids without the involve-
ment of a catalyst, with m-chloroperbenzoic acid being
Xue-Li Geng, Zhi Wang, Xiao-Qiang Li, and Chi Zhang*
The State Key Laboratory of Elemento-Organic Chemistry,
The Research Institute of Elemento-Organic Chemistry,
College of Chemistry, Nankai University, Tianjin 300071,
P. R. China
6
the most often used oxidant. This catalyst-free epoxi-
Received June 7, 2005
dation reaction possesses advantages with respect to its
being simple, environmentally benign, and easily handled.
2
Sodium chlorite (NaClO ), a very cheap oxidizing
agent, has been extensively used in water treatment and
as a bleaching agent in the paper, pulp, and textiles
7
industries. However, in the field of synthetic organic
chemistry, applications of sodium chlorite are not that
broad. The most impressive use of sodium chlorite is its
efficient oxidation of aldehydes to the corresponding
8
Sodium chlorite has been demonstrated to be capable of
epoxidizing a variety of olefins at 55-65 °C (oil bath).
Chlorine dioxide is believed to be the pivotal epoxidizing
agent in the reaction on the basis of the mechanistic studies.
carboxylic acids in acidic aqueous media. More recently,
there is increasing attention focused on its utilization in
organic syntheses, including the oxidation of sulfides to
9
the corresponding sulfoxides, the chlorination of acti-
vated arenes10 and ketones with manganese complexes
11
Epoxidation of olefins is a key transformation in
organic synthesis, because epoxides are widely utilized
(
q) Nakajima, M.; Sasaki, Y.; Iwamoto, H.; Hashimoto, S.-i. Tetrahe-
1
dron Lett. 1998, 39, 87-88. (r) Coperet, C.; Adolfsson, H.; Sharpless,
K. B. Chem. Commun. 1997, 1565-1566. For an iron complex as
catalyst, see the following: (s) Dubois, G.; Murphy, A.; Stack, T. D. P.
Org. Lett. 2003, 5, 2469-2472.
in the laboratory as versatile building blocks and to
2
manufacture different chemicals. Nowadays, the devel-
opment of nonasymmetric epoxidation methods to provide
racemic epoxides is still important for both laboratory
and industrial use. A number of nonasymmetric metal-
catalyzed epoxidation reactions have been discovered in
(4) (a) Zuwei, X.; Ning, Z.; Yu, S.; Kunlan, L. Science 2001, 292,
139-1141. (b) Kamata, K.; Yonehara, K.; Sumida, Y.; Yamaguchi,
1
K.; Hikichi, S.; Mizuno, N. Science 2003, 300, 964-966.
(
5) For an excellent review, see the following: (a) Armstrong, A.
Angew. Chem., Int. Ed. 2004, 43, 1460-1462. For ketones as catalysts,
see the following: (b) Yang, D.; Wong, M.-K.; Yip, Y.-C. J. Org. Chem.
1
3
the past decade; especially noteworthy was the develop-
995, 60, 3887-3889. (c) Yang, D.; Jiao, G.-S.; Yip, Y.-C.; Wong, M.-
K. J. Org. Chem. 1999, 64, 1635-1639. (d) Frohn, M.; Wang, Z.-X.;
Shi, Y. J. Org. Chem. 1998, 63, 6425-6426. (e) Hashimoto, N.; Kanda,
A. Org. Process Res. Dev. 2002, 6, 405-406. (f) Denmark, S. E.; Forbes,
D. C.; Hays, D. S.; DePue, J. S.; Wilde, R. G. J. Org. Chem. 1995, 60,
1391-1407. For amines as catalysts, see the following: (g) Ho, C.-Y.;
Chen, Y.-C.; Wong, M.-K.; Yang, D. J. Org. Chem. 2005, 70, 898-906.
(h) Adamo, M. F. A.; Aggarwal, V. K.; Sage, M. A. J. Am. Chem. Soc.
2000, 122, 8317-8318. (i) Adamo, M. F. A.; Aggarwal, V. K.; Sage, M.
A. J. Am. Chem. Soc. 2002, 124, 11223. For KBr as catalyst, see the
following: (j) Klawonn, M.; Bhor, S.; Mehltretter, G.; D o¨ bler, C.;
Fischer, C.; Beller, M. Adv. Synth. Catal. 2003, 345, 389-392.
(6) (a) Prilezhaev, N. Ber. 1909, 42, 4811. (b) Swern, D. Chem. Rev.
1949, 45, 1-68.
(7) (a) Leddy, J. J. In Riegel’s Handbook of Industrial Chemistry,
8th ed.; Kent, J. A., Ed.; Van Nostrand Reinhold Company Inc: New
York, 1983; pp 212-235. (b) Taylor, M. C.; White, J. F.; Vincent, G.
P.; Cunningham, G. L. Ind. Eng. Chem. 1940, 32, 899-903. (c) White,
J. F.; Taylor, M. C.; Vincent, G. P. Ind. Eng. Chem. 1942, 34, 782-
792. (d) F a´ bi a´ n, I. Coord. Chem. Rev. 2001, 216-217, 449-472.
(8) For sulfamic acid or resorcinol as chlorine scavenger, see the
following: (a) Lindgren, B. O.; Nilsson, T. Acta Chem. Scand. 1973,
27, 888-890. For 2-methyl-2-butene as chlorine scavenger, see the
following: (b) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45,
1175-1176. For hydrogen peroxide or DMSO as chlorine scavenger,
see the following: (c) Dalcanale, E.; Montanari, F. J. Org. Chem. 1986,
51, 567-569. For an excellent review, see the following: (d) Raach,
A.; Reiser, O. J. Prakt. Chem. 2000, 342, 605-608.
*
Corresponding author. Fax: (+86)-22-23499247. Tel: (+86)-22-
3499204.
1) Rao, A. S. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Ley, S. V., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 357-
36.
2
(
4
(
2) Gerhartz, W.; Yamamoto, Y. S.; Kaudy, L.; Rounsaville, J. F. In
Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed.; Schulz, G.,
Ed.; Verlag Chemie: Weinheim, Germany, 1987; Vol. A9, pp 531-564.
(
3) For tungsten-based compounds as catalysts, see the following:
(
a) Sato, K.; Aoki, M.; Ogawa, M.; Hashimoto, T.; Noyori, R. J. Org.
Chem. 1996, 61, 8310-8311. (b) Sato, K.; Aoki, M.; Ogawa, M.;
Hashimoto, T.; Panyella, D.; Noyori, R. Bull. Chem. Soc. Jpn. 1997,
7
0, 905. (c) Duncan, D. C.; Chambers, R. C.; Hecht, E.; Hill, C. L. J.
Am. Chem. Soc. 1995, 117, 681-691. (d) Hoegaerts, D.; Sels, B. F.; de
Vos, D. E.; Verpoort, F.; Jacobs, P. A. Catal. Today 2000, 60, 209-
2
1
18. (e) Venturello, C.; Daloisio, R. J. Org. Chem. 1988, 53, 1553-
557. For a nickel-based complex as catalyst, see the following: (f)
Ben-Daniel, R.; Khenkin, A. M.; Neumann, R. Chem.sEur. J. 2000,
6
, 3722-3728. For a combination of molybdenum- or tungsten-based
heteropoly acids as catalyst, see the following: (g) Ishii, Y.; Yamawaki,
K.; Ura, T.; Yamada, H.; Yoshida, T.; Ogawa, M. J. Org. Chem. 1988,
5
3, 3587-3593. For manganese-containing compounds as catalysts,
see the following: (h) Bosing, M.; Noh, A.; Loose, I.; Krebs, B. J. Am.
Chem. Soc. 1998, 120, 7252-7259. (i) Neumann, R.; Gara, M. J. Am.
Chem. Soc. 1995, 117, 5066-5074. (j) Neumann, R.; Gara, M. J. Am.
Chem. Soc. 1994, 116, 5509-5510. (k) Lane, B. S.; Vogt, M.; DeRose,
V. J.; Burgess, K. J. Am. Chem. Soc. 2002, 124, 11946-11954. (l) Tong,
K.-H.; Wong, K.-Y.; Chan, T. H. Org. Lett. 2003, 5, 3423-3425. (m)
Murphy, A.; Pace, A.; Stack, T. D. P. J. Am. Chem. Soc. 2004, 126,
(9) (a) Hirano, M.; Yakabe, S.; Clark, J. H.; Morimoto, T. J. Chem.
Soc., Perkin Trans. 1 1996, 2693-2697. (b) Hirano, M.; Yakabe, S.;
Clark, J. H.; Kudo, H.; Morimoto, T. Synth. Commun. 1996, 26, 1875-
1886.
3
119-3122. (n) Murphy, A.; Dubois, G.; Stack, T. D. P. J. Am. Chem.
Soc. 2003, 125, 5250-5251. For rhenium-based compounds as cata-
lysts, see the following: (o) Rudolph, J.; Reddy, K. L.; Chiang, J. P.;
Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 6189-6190. (p) Yudin,
A. K.; Sharpless, K. B. J. Am. Chem. Soc. 1997, 119, 11536-11537.
(10) (a) Hirano, M.; Yakabe, S.; Monobe, H.; Morimoto, T. Can. J.
Chem. 1997, 75, 1905-1912. (b) Hirano, M.; Yakabe, S.; Monobe, H.;
Clark, J. H.; Morimoto, T. J. Chem. Soc., Perkin Trans. 1 1997, 3081-
3085.
10.1021/jo0511400 CCC: $30.25 © 2005 American Chemical Society
9610
J. Org. Chem. 2005, 70, 9610-9613
Published on Web 10/08/2005