Organic Letters
Letter
(6) Lv, L.; Shen, B.; Li, Z. Angew. Chem., Int. Ed. 2014, 53, 4164−
4167.
(7) Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tsukamoto, K.;
Tanaka, T. Synthesis 2009, 2963−2969.
(8) For recent reviews on fragmentation in natural product synthesis,
see: (a) Drahl, M. A.; Manpadi, M.; Williams, L. J. Angew. Chem., Int.
Ed. 2013, 52, 11222−11251. (b) Prantz, K.; Mulzer, J. Chem. Rev.
2010, 110, 3741−3766.
(9) For a related cyclization−fragmentation strategy for accessing
medium-sized carbocycles using Sm(II)-mediated reactions, see:
Molander, G. A.; Le Huer
66, 4511−4516.
(10) Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. J. Org. Chem.
2005, 70, 1316−1327.
́
ou, Y.; Brown, G. A. J. Org. Chem. 2001,
Figure 3. X-ray crystallographic structure of syn-diol 12.
reported previously7 by using tert-butylhydroperoxide (TBHP)
under basic conditions to provide epoxide 14 in 61% yield.
Final oxidation of the aryl motif of compound 14 with ceric
ammonium nitrate (CAN) in aqueous MeCN allowed us to
furnish clavilactone B (1). The spectroscopic and analytical
data of synthetic clavilactone B (1) were identical with those
reported in the literature.4−6
In conclusion, we have established a new route to access
clavilactone B, which features a SmI2-mediated radical
cyclization−fragmentation of an indanone derivative. This
approach has allowed for the facile construction of the key
10-membered ring system fused to an aromatic ring. The
approach would provide an alternative to the RCM-based
routes that have been successfully developed so far to
synthesize this class of attractive natural products.
(11) Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.; Whelan,
J.; Bosnich, B. J. Am. Chem. Soc. 1994, 116, 1821−1830.
(12) (a) Nerz-Stormes, M.; Thornton, E. R. Tetrahedron Lett. 1986,
27, 897−900. (b) Harrison, C. R. Tetrahedron Lett. 1987, 28, 4135−
4138. (c) Mahrwald, R.; Gundogan, B. J. Am. Chem. Soc. 1998, 120,
̈
413−414.
(13) For selected reviews on samarium(II)-mediated transformations,
see: (a) Szostak, M.; Fazakerley, N. J.; Parmar, D.; Procter, D. J. Chem.
Rev. 2014, 114, 5959−6039. (b) Coote, S. C.; Flowers, R. A.;
Skrydstrup, T.; Procter, D. J. Organic Synthesis Using Samarium
Diiodide. In Encyclopedia of Radicals in Chemistry, Biology and
Materials; Chatgilialoglu, C., Studer, A., Eds.; John Wiley & Sons:
Chichester, U.K., 2012; Vol. 2, pp 849−900. (c) Szostak, M.; Spain,
M.; Parmar, D.; Procter, D. J. Chem. Commun. 2012, 48, 330−346.
(d) Beemelmanns, C.; Reissig, H.-U. Chem. Soc. Rev. 2011, 40, 2199−
2210. (e) Honda, T. Heterocycles 2010, 81, 2719−2747. (f) Dahlen, A.;
Hilmersson, G. Eur. J. Inorg. Chem. 2004, 3393−3403. (g) Edmonds,
D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371−3403.
(h) Kagan, H. B. Tetrahedron 2003, 59, 10351−10372. (i) Molander,
G. A.; Harris, C. R. Tetrahedron 1998, 54, 3321−3354. (j) Inanaga, J.
Trends Org. Chem. 1990, 1, 23−30.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental details and spectroscopic data. This material is
(14) For a review on Sm(II)-mediated synthesis of small carbocycles,
see: Harb, H. Y.; Procter, D. J. Synlett 2012, 23, 6−20.
(15) The structure of compound 16 was unambiguously determined
by X-ray crystallographic analysis. CCDC 1023173 contains the
supplementary X-ray crystallographic data for this compound. These
data are available free of charge from The Cambridge Crystallographic
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors acknowledge Professor N. Kotoku of Osaka
University for NOE analysis and K. Sawada and S. Nojima
(Osaka University) for their preliminary contribution to this
work. This work was partially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas [No. 22136006] from
the Ministry of Education, Culture, Sports, Science and
Technology, Japan (MEXT).
(16) We initially assumed that lactone 16 was formed by protonation
of intermediate i and subsequent cyclization of the resultant ester
during aqueous workup or on silica gel TLC (when monitoring by
TLC). If this is the case, the elongation of reaction time would
increase fragmentation product 7 while decreasing lactone 16.
However, prolonged reaction times did not facilitate the formation
of 7 and led to no further consumption of lactone 16, suggesting that
lactone 16 was generated in situ via rapid protonation of Sm(III)
enolate followed by lactonization. We suspected that intra- or
intermolecular protonation of enolate i by the acidic motifs such as
the methyl substituent of the methanesulfonyl group of the substrate
or intermediate i and the acidic methylene protons of product 7 might
be responsible for such phenomena. Attempted experimentations
where the reaction was quenched by deuterium oxide, however,
REFERENCES
■
(1) Arnone, A.; Cardillo, R.; Meille, S. V.; Nasini, G.; Tollazi, M. J.
Chem. Soc., Perkin Trans. 1 1994, 2165−2168.
(2) Merlini, L.; Nasini, G.; Scaglioni, L.; Cassinelli, G.; Lanzi, C.
Phytochemistry 2000, 53, 1039−1041. For the discussion on the
necessity of structural revision, see ref 6.
(3) Cassinelli, G.; Lanzi, C.; Pensa, T.; Gambetta, R. A.; Nasini, G.;
Cuccuru, G.; Cassinis, M.; Pratesi, G.; Polizzi, D.; Tortoreto, M.;
Zunino, F. Biochem. Pharmacol. 2000, 59, 1539−1547.
́
(4) Larrosa, I.; Da Silva, M. I.; Gomez, P. M.; Hannen, P.; Ko, E.;
Lenger, S. R.; Linke, S. R.; White, A. J. P.; Wilton, D.; Barrett, A. G. M.
J. Am. Chem. Soc. 2006, 128, 14042−14043.
(5) Takao, K.; Nanamiya, R.; Fukushima, Y.; Namba, A.; Yoshida, K.;
Tadano, K. Org. Lett. 2013, 15, 5582−5585.
128
dx.doi.org/10.1021/ol503356m | Org. Lett. 2015, 17, 126−129