ruthenium species11a,15 from ruthenium and molecular oxygen
followed by oxygen transfer to tertiary nitrogen, which yields
the corresponding N-oxide.
Ullmann’s Encyclopedia of Industrial Chemistry, VCH, Germany, 5th
edn., 1993, vol. A-22, pp. 399–428.
3 For representative reports see: (a) V. Boekelheide and W. J. Linn, J. Am.
Chem. Soc., 1954, 76, 1286; (b) E. C. Taylor and A. J. Crovetti, Org.
Synth. Coll. Vol., 1963, 4, 828; (c) P. Brougham, M. S. Copper, D. A.
Cummerson, H. Heaney and N. Thompson, Synthesis, 1987, 1015; (d)
R. W. Murray and R. Jeyaraman, J. Org. Chem., 1985, 50, 2847; (e) M.
Ferrer, F. Sanchez-Baeza and A. Messeguer, Tetrahedron, 1997, 53,
1587.
4 (a) C. Coperet, H. Adolfsson, T.-A. V. Khuong, A. K. Yudin and K. B.
Sharpless, J. Org. Chem., 1998, 63, 1740; (b) Z. Zhu and J. H. Espenson,
J. Org. Chem., 1995, 60, 1326; (c) Y. Jiao and H. Yu., Synlett., 2001, 1,
73.
In summary we have demonstrated, for the first time, that
ruthenium catalyzed oxidation of tertiary nitrogen compounds
with molecular oxygen as the sole oxidant yields N-oxides in
excellent yields under mild conditions. The simplicity of the
system, easy separation of the catalysts, simple workup and
excellent yields make this method an attractive, environmen-
tally acceptable synthetic tool for the oxidation of tertiary
nitrogen compounds to their corresponding N-oxides.
We are thankful to Director, IIP for his kind permission to
publish these results. S. L. J. is thankful to CSIR, New Delhi, for
the award of a research fellowship.
5 A. Thellend, P. Battioni, W. Sanderson and D. Mansuy, Synthesis, 1997,
1387.
6 (a) K. Bergstad and J. E. Backvall, J. Org. Chem., 1998, 63, 6650; (b)
S. Ball and T. C. Bruice, J. Am. Chem. Soc., 1980, 102, 6498.
7 D. J. Robinson, P. McMom, D. Bethell, P. C. Bulmanpage, C. Sly, F.
King, F. E. Hangcock and G. J. Hutching, Catal. Lett., 2001, 72, 233.
8 M. R. Prasad, G. Kamalkar, G. Madhavi, S. J. Kulkarni and K. V.
Raghvan, Chem. Commun., 2000, 1577.
Notes and references
†
Experimental procedure: all the substrates and solvents are commer-
9 B. M. Choudhary, B. Bharathi, C. V. Reddy, K. M. Lakshmi and K. V.
Raghavan, Chem. Commun., 2001, 1736.
cially available. A typical procedure for the oxidation of tertiary nitrogen
compound to its N-oxide is as follows: molecular oxygen was bubbled into
a stirred solution of 4-picoline (0.93 g, 10 mmol) and RuCl3·nH2O‡ (0.103
g, 5 mol%) in dichloroethane (10 ml) in a 50 ml double necked round
bottomed flask. The progress of reaction was monitored by TLC (SiO2). At
the end of reaction, the catalyst was removed by filtration and the reaction
mixture thus obtained was purified by passing through a column of basic
alumina using dichloromethane/MeOH (95+5) as eluent. Removal of the
solvent and usual workup gave 4-picoline N-oxide (0.92 g, 95% yield).
Similarity other N-oxides were prepared and the reaction times required and
yields obtained are shown in Table 1. The products were identified by
comparing their physical and spectral data with those of authentic
compounds reported in the literature.
For comparing the efficiency of various solvents, experiments were
similarily conducted with different solvents and the residues obtained after
passing through the basic alumina column were analyzed by HPLC. For
comparing the efficiency of various catalysts, experiments were carried out
with different Ru-catalysts under similar conditions and the residues
obtained after passing through the basic alumina column was analyzed by
HPLC.
10 (a) Y. Nishiyama, Y. Nakagawa and N. Mizuno, Angew. Chem., Int.
Ed., 2001, 40, 3639; (b) J. M. Thomas, R. Raja, G. Sankar and R. G.
Bell, Acc. Chem. Res., 2001, 34, 191; (c) C. Dobler, G. M. Mehltretter,
U. Sundermeier and M. Beller, J. Am. Chem. Soc., 2001, 122, 10289; (d)
J. T. Groves and R. Quinn, J. Am. Chem. Soc., 1985, 107, 5790; (e) S.
Davis. and R. S. Drago, J. Chem. Soc., Chem. Commun., 1990, 250; (f)
R. J. David, S. J. Pugsley and S. Matthew, J. Am. Chem. Soc., 2001, 123,
7475; (g) W. Partenheimer, in The Activation of Dioxygen and
Homogeneous Catalytic Oxidation, ed. D. H. R. Barton, A. E. Martell
and D. T. Sawyer, Plenum Press, New York, 1993; (h) Y. Nishiyama, Y.
Nakagawa and N. Mizuno, Angew. Chem., 2001, 40, 3639; (i) K.
Noboyuki, M. Yasunari, T. Nishimura and S. Uemura, J. Org. Chem.,
2001, 66, 6620.
11 (a) T. Naota, H. Takaya and S. Murahashi, Chem. Rev., 1998, 98, 2599;
(b) A. Miyata, M. Murakami, R. Iric and T. Katsuki, Tetrahedron Lett.,
2001, 42, 7067; (c) T. Konda, T. Okada and T. Mitsudo, J. Am. Chem.
Soc., 2002, 124, 186; (d) J. E. Marko, P. R. Giles, M. Tsukazaki, I.
Chelle-Regnaut, C. J. Urch and S. M. Brown, J. Am. Chem. Soc., 1997,
119, 12661.
‡ One of the referees suggested to prepare purified ruthenium trichloride (by
treating the commercial ruthenium trichloride with conc. HCl and a few
drops of ethanol) and K2[RuCl5(H2O)] from commercial ruthenium
trichloride and use them as catalysts in these reactions. Accordingly we
studied the oxidation of 4-picoline, 2-picoline and pyridine by using
purified ruthenium trichloride and K2[RuCl5(H2O)] as catalysts under
similar conditions; N-oxide yields and reaction times were found to be
comparable to those for commercial RuCl3·nH2O.
12 There are two literature reports on oxidation of tertiary nitrogen
compounds to N-oxides using a molecular oxygen–aldehyde system: (a)
R. S. Dongre, T. V. Rao, B. K. Sharma, B. Sain and V. K. Bhatia, Synth.
Commun., 2001, 31, 167; (b) F. Wang, H. Zhang, G. Song and X. Lu,
Synth. Commun., 1999, 29, 11.
13 (a) T. V. Rao, B. Sain, K. Kumar, P. S. Murthy, T. S. R. Prasada Rao and
G. C. Goshi, Synth. Commun., 1998, 28, 319; (b) B. Sain, P. S. Murthy,
T. V. Rao, T. S. R. Prasada Rao and G. C. Goshi, Tetrahedron Lett.,
1994, 35, 5083; (c) T. V. Rao, B. Sain, P. S. Murthy, T. S. R. Prasada
Rao, A. K. Jain and G. C. Joshi, J. Chem. Res. (S), 1997, 300; (d) T. V.
Rao, B. Sain, P. S. N. Murthy, G. C. Joshi and T. S. R. Prasada Rao,
Stud. Surf. Sci. Catal., 1998, 113, 921; (e) S. L. Jain and B. Sain, J. Mol.
Catal., 2001, 176, 101.
14 For the preparation of RuH(CO)(OCOMe)(PPh3)2, RuCl2(PPh3)4,
RuCl2(PPh3)3, RuH2(CO)(PPh3)3 from RuCl3·3H2O, see: (a) A.
Dobsen, S. D. Robinson and M. F. Uttley, Inorg Synth., 1977, 17, 126;
(b) P. S. Hallman, T. A. Stephenson and G. Wilkinson, Inorg. Synth.,
1970, 12, 238; (c) N. Ahmad, J. J. Levison, S. D. Robinson and M. F.
Uttley, Inorg Synth., 1974, 15, 48.
1 (a) V. Van Rheenen, D. Y. Cha and W. M. Hartley, Org. Synth. Coll.
Vol., 1988, 6, 342; (b) M. Schroder, Chem. Rev., 1980, 80, 187; (c) L.
Ahrgren and L. Sutin, Org. Proc. Res. Dev., 1997, 1, 425; (d) S. V. Ley,
J. Norman, W. P. Griffith and S. P. Marsden, Synthesis, 1994, 639; (e)
V. Franzen and S. Otto, Chem. Ber., 1961, 94, 1360; (f) S. Suzuki, T.
Onishi, Y. Fujita, H. Misawa and J. Otera, Bull. Chem. Soc. Jpn., 1986,
59, 3287; (g) A. G. Godfrey and B. Ganem, Tetrahedron Lett., 1990, 31,
4825; (h) W. P. Griffith, S. V. Ley, G. P. Whitcombe and A. D. White,
J. Chem. Soc., Chem. Commun., 1987, 1625.
2 (a) A. C. Cope and E. Ciganek., Org. Synth. Coll. Vol., 1963, 4, 612; (b)
A. C. Cope and E. R. Trumbull., Org. React., 1960, 11, 317; (c)
15 (a) J. T. Groves and R. Ouinn, J. Am. Chem. Soc., 1985, 107, 5790; (b)
M. M. T. Khan and R. S. Shukla, J. Mol. Catal., 1988, 44, 85.
CHEM. COMMUN., 2002, 1040–1041
1041