Cop p er -Ca ta lyzed Regioselective Allylic
Su bstitu tion Rea ction s w ith In d iu m
Or ga n om eta llics
and stereoselectivity to as well as the application of
different types of nucleophiles is a desirable goal. This
reaction can be performed using soft nucleophiles and
organometallic reagents under transition metal catalysis
7
8
(
generally palladium or nickel) or, alternatively, by the
David Rodr ´ı guez, J os e´ P e´ rez Sestelo,* and
Luis A. Sarandeses*
9
stoichiometric use of organocopper species and copper-
catalyzed reactions of several organometallics.1 From the
standpoint of organic synthesis, palladium and copper
are the most important metals for selective metal-
catalyzed nucleophilic allylic substitution.
0
Departamento de Qu ı´ mica Fundamental, Universidade da
Coru n˜ a, E-15071 A Coru n˜ a, Spain
As part of a project aimed at finding new applications
for indium organometallics in organic synthesis, we
explored the synthetic utility of triorganoindium reagents
in the nucleophilic allylic substitution reaction. The only
examples of the use of group 13 organometallics in allylic
substitution involved a few examples of the palladium-
catalyzed reactions of boron reagents11 and the copper-
catalyzed reactions of aluminum alkyls.12 Hitherto, the
use of indium organometallics has been limited to
Received October 22, 2002
Abstr a ct: The first nucleophilic allylic substitution reac-
tions of triorganoindium compounds with allylic halides and
phosphates are reported. The reactions of trialkyl- and
triarylindium reagents with cinnamyl and geranyl halides
and phosphates, with the aid of copper catalysis [Cu(OTf)2/
P(OEt)3], are described. In general, the reaction proceeds
efficiently to give good yields and regioselectively to afford
the SN2′ product.
13
tetraorganoindates and to the recently published pal-
ladium-catalyzed allylic substitution using allylindium
reagents generated in situ.14 In this paper, we wish to
report the first use of triorganoindium reagents (R
in nucleophilic allylic substitution under copper catalysis
eq 1).
3
In)
Over the past decade, indium has received a great deal
of attention from organic chemists due to its interesting
chemical properties, which include a low first oxidation
potential, stability under aqueous conditions, and low
(
1
toxicity. As a consequence, indium metal has been widely
used in the addition reactions of allylic systems to
carbonyls and related derivatives under aqueous or
anhydrous conditions. More recently, indium organo-
2
Our investigation started with a study of the reactions
of tri-n-butylindium (n-Bu In) and triphenylindium
Ph In) with cinnamyl bromide (1a , Table 1). In the
absence of catalyst the reaction failed, but the addition
of a catalytic amount of a copper salt promoted a rapid
reaction that gave the nucleophilic allylic substitution
products in moderate yields. These products were ob-
metallics have emerged as useful reagents for funda-
mental reactions in organic synthesis, such as conjugate
3
(
3
additions,3 cross-coupling reactions,4,5 or additions to
6
triple bonds. Despite the increasing synthetic utility of
indium reagents in organic synthesis, a number of
important reactions remain unexplored.
Nucleophilic allylic substitution constitutes a powerful
reaction in synthesis and the ability to control the regio-
(
7) For a general overview, see: Tsuji, T. Transition Metal Reagents
and Catalysts; Wiley: New York, 2000; Chapter 4, pp 109-168.
8) (a) Godleski, S. A. In Comprehensive Organic Synthesis; Trost,
(
(
1) (a) Cintas, P. Synlett 1995, 1087-1096. (b) Marshall, J . A.
B. M., Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 4, Chapter
3.3, pp 585-661. (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996,
96, 395-422. (c) Heumann, A. In Transition Metals for Organic
Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998;
Chapter 2.15, pp 251-264.
Chemtracts: Org. Chem. 1997, 10, 481-496. (c) Li, C.-J .; Chan, T.-H.
Organic Reactions in Aqueous Media; Wiley: New York, 1997; Chapter
4
, pp 64-114. (d) Paquette, L. A. In Green Chemistry: Frontiers in
Benign Chemical Synthesis and Processing; Anastas, P. T., Williamson,
T. C., Eds.; Oxford University Press: Oxford, U.K., 1998; Chapter 15,
pp 250-264.
(9) Lipshutz, B. H. In Comprehensive Organometallic Chemistry II;
Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford,
U.K., 1995; Vol. 12, Chapter 3.2, pp 59-130.
(
2) (a) Li, C.-J .; Chan, T.-H. Tetrahedron 1999, 55, 11149-11176.
(
b) Ranu, B. C. Eur. J . Org. Chem. 2000, 2347-2356. (c) Pae, A. N.;
Cho, Y. S. Curr. Org. Chem. 2002, 6, 715-737.
3) (a) Araki, S.; Shimizu, K.; J in, S.-J .; Butsugan, Y. J . Chem. Soc.,
(10) (a) Yanagisawa, A.; Yamamoto, H. In Transition Metal Cataly-
sed Reactions; Murahashi, S.-I., Davies, S. G., Eds.; Blackwell Sci-
ence: Oxford, U.K., 1999; Chapter 11, pp 225-240. (b) Sofia, A.;
Karlstr o¨ m, E.; B a¨ ckvall, J .-E. In Modern Organocopper Chemistry;
Krause, N., Ed.; Wiley-VCH: Weinheim: 2002; Chapter 8, pp 259-
288. For recent examples, see: (c) D u¨ bner, F.; Knochel, P. Angew.
Chem., Int. Ed. 1999, 38, 379-381. (d) Meuzelaar, G. J .; Karlstr o¨ m,
A. S. E.; van Klaveren, M.; Persson, E. S. M.; del Villar, A.; van Koten,
G.; B a¨ ckvall, J .-E. Tetrahedron 2000, 56, 2895-2903. (e) Luchaco-
Cullis, C.; Mizutani, H.; Murphy, K. E.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2001, 40, 1456-1460. (f) Malda, H.; van Zijl, A. W.; Arnold,
L. A.; Feringa, B. L. Org. Lett. 2001, 3, 1169-1171.
(
Chem. Commun. 1991, 824-825. (b) P e´ rez, I.; P e´ rez Sestelo, J .;
Maestro, M. A.; Mouri n˜ o, A.; Sarandeses, L. A. J . Org. Chem. 1998,
6
3, 10074-10076.
4) For contributions from this group, see: (a) P e´ rez, I.; P e´ rez
(
Sestelo, J .; Sarandeses, L. A. Org. Lett. 1999, 1, 1267-1269. (b) P e´ rez,
I.; P e´ rez Sestelo, J .; Sarandeses, L. A. J . Am. Chem. Soc. 2001, 123,
4
155-4160. (c) Pena, M. A.; P e´ rez, I.; P e´ rez Sestelo, J .; Sarandeses,
L. A. Chem. Commun. 2002, 2246-2247.
5) (a) Nomura, R.; Miyazaki, S.-I.; Matsuda, H. J . Am. Chem. Soc.
(
1
992, 114, 2738-2740. (b) Takami, K.; Yorimitsu, H.; Shinokubo, H.;
(11) (a) Moreno-Ma n˜ as, M.; Pajuelo, F.; Pleixats, R. J . Org. Chem.
1995, 60, 2396-2397. (b) Cort e´ s, J .; Moreno-Ma n˜ as, M.; Pleixats, R.
Eur. J . Org. Chem. 2000, 239-243.
Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1997-1999. (c) Lee, P.
H.; Sung, S.; Lee, K. Org. Lett. 2001, 3, 3201-3204.
(6) (a) Araki, S.; Imai, A.; Shimizu, K.; Yamada, M.; Mori, A.;
(12) Flemming, S.; Kabbara, J .; Nickisch, K.; Westermann, J .; Mohr,
J . Synlett 1995, 183-185.
Butsugan, Y. J . Org. Chem. 1995, 60, 1841-1847. (b) Ranu, B. C.;
Majee, A. Chem. Commun. 1997, 1225-1226. (c) Fujiwara, N.; Yama-
moto, Y. J . Org. Chem. 1999, 64, 4095-4101. (d) Klaps, E.; Schmid,
W. J . Org. Chem. 1999, 64, 7537-7546. (e) Takami, K.; Yorimitsu, H.;
Oshima, K. Org. Lett. 2002, 4, 2993-2995.
(13) Araki, S.; J in, S.-J .; Butsugan, Y. J . Chem. Soc., Perkin Trans.
1 1995, 549-552.
(14) Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146-
148.
1
0.1021/jo0265939 CCC: $25.00 © 2003 American Chemical Society
Published on Web 02/21/2003
2
518
J . Org. Chem. 2003, 68, 2518-2520