Page 5 of 7
New Journal of Chemistry
Please do not adjust margins
Journal Name
ARTICLE
1
2
3
4
(Fig. 5b). The XPS spectra of N1s and C1s agreed basically with Furthermore, the low amount of catalyst also paves the way of
DOI: 10.1039/D0NJ04801A
that before the reaction (Fig. 5c, 5d).
sustainable development.
5
6
7
8
Conflicts of interest
There are no conflicts to declare.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Acknowledgements
The work was supported by National Natural Science
Foundation of China (21801099)
Notes and references
1
2
3
4
5
6
7
8
9
A. Zuliani, M. J. Muñoz-Batista and R. Luque, Green Chem.
2018, 20, 3001.
S.Y. Zhang, X. X.Xiao, T.T. Lv, X. M. Lv, B. T. Liu, W. Wei and J.
Liu, Appl. Surf. Sci. 2018, 446, 10.
X.T.Wang, T.Ouyang, L.Wang, J.H.Zhong, and Z.Q.Liu, Angew.
Chem. Int. Ed. 2020, 59,6492.
Z.W.Wang, S.Y.Zhang, X.M.Lv, J.Bai, W.T.Yu and J.Liu, Int. J.
Hydrogen Energ. 2019,44,16478.
J.Y.Wang, W.T.Liu, X.P.Li, T.Ouyang, and Z.Q.Liu, Chem
Commun. 2020,56,1489.
Z. X. Yan, C.J. Dai., M.M. Zhang, X.M. Lv and J. M. Xie, Int. J.
Hydrogen Energ. 2019, 180, 4090.
X.X. Xiao, Y.L. X, X. M. Lv, J. M. Xie, J. Liu and C. L. Yu, J.
Colloid Interf. Sci. 2019, 545, 1.
S.H. Gong, X.X. Xiao, D. Sam, B.T. Liu, W. Wei, W.T. Yu and
X.M. Lv, Microchimica Acta. 2019, 186, 853.
H.Su, X.T.Wang, J.X.Hu, T.Ouyang, K.Xiao, and Z.Q.Liu,
J.Mater. Chem. A, 2019,7,22307.
Figure 5. XRD patterns of Cu-Nx-C after reaction(a), and high-resolution XPS
spectrum of Cu2p(b), N1s(c), and C1s(d) for Cu-Nx-C after reaction,
respectively.
Based on preliminary results and reported mechanism
studies31-32, an individualized mechanism is illustrated in
Scheme 1. Cu (0) was initially oxidized into Cu (I) by oxygen
thus triggered the coordination of acetylenes to copper center.
Acetylenic protons could be abstracted by nitrogen on nano-
sheet to facilitate the formation of copper acetylide (C).
Following oxidation would generate Cu (III) species (D) as
tracked by Cyclic Voltammetry (see Fig. S3). Reductive
10 X. T.Wang, T.Ouyang, L.Wang, J.H.Zhong, T.Y.Ma, and Z.Q.Liu,
Angew. Chem. Int. Ed., 2019,58,13291.
11 D. K. Huang, Y. Z. Luo, S.Li, L.Liao, Y.X. Li, H. Chen, and J.H.Ye.
Mater. Horiz. 2020, 7, 970.
12 L.L.Fu, Y.J.Lu, Z.G.Liu, R.L.Zhu. Chinese J.Catal. 2016, 37, 398.
13 W.Z.Zheng, F.Chen, Q.Zeng, Z.J.Li, B.Yang, L.C.Lei, Q.H.Zhang,
F.He, X.L.Wu, Y.Hou. Nano-Micro Lett., 2020,12,108.
14 D.K.Chen, J.P.Ji, Z.Q.Jiang, M.Ling, Z.J.Jiang, X.S.Peng. J.
Power Sources, 2020, 450, 227660.
15 D. Sam, E.Sam, A.Durairaj, X.M.Lv, Z.J.Zhou, J.Liu. Carbohyd.
Res. 2020, 491, 107986.
16 C. Wang, W. Chen, K. Xia, N. Xie, H. Wang and Y. Zhang,
Small. 2019, 15, 1804966.
17 C. Li, F. Sun, Y. Lin, J. Power Sources 2018, 384, 48.
18 M. L. Lerch, M. K. Harper and D. J. Faulkner, Diplastrella sp, J.
Nat. Prod. 2003, 66, 667.
19 Y.-Z. Zhou, H.-Y. Ma, H. Chen, L. Qiao, Y. Yao, J. Q. Cao and Y.
H. Pei, Chem. Pharm. Bull. 2006, 54 1455.
20 M. Ladika, T. E. Fisk, W. W. Wu and S. D. Jons, J. Am. Chem.
Soc. 1994,116, 12093.
21 S. F. Mayer, A. Steinreiber, R. V. A. Orru and K. Faber, J. Org.
Chem. 2002, 67, 9115.
22 G. Zeni, R. B. Panatieri, E. Lissner, P. H. Menezes, A. L. Braga
and H. A. Stefani, Org. Lett. 2001,3,819.
23 A. Stutz, Angew. Chem., Int. Ed. 1987, 26, 320.
24 F. Diederich, P. J. Stang and R. R. Tykwinski, Acetylene
Chemistry: Chemistry, Biology, and Material Science, Wiley-
VCH, Weinheim, Germany 2005, pp. 233-256.
25 J. Liu, J. W. Y. Lan and B. Z. Tang, Chem. Rev. 2009, 109,
5799.
elimination of complex
D produced acetylenic coupling
product 2a and Cu (II) species (E). After the capture of another
acetylene, secondary reductive elimination of Cu (II) complex
(F) release diacetylene and water, meanwhile regenerate
intermediate (A) for the next catalytic cycle.
Ph
Ph
H
H
Ph
Ph
H
H
O2
N
N
N
N
Cu(0)
H2O
Cu(I)
(B)
Cu(I)
(C)
Cu(I)
(A)
1/2 O2
Ph
Ph
1/2 Ph
Ph
HO
OH
OH2
Cu(II)
(F)
N
N
N
Cu(II)
(E)
Cu(III)
(D)
1/2 Ph
Ph
Scheme 1. Plausible mechanism of coupling reaction under Cu-Nx-C catalyst.
Conclusions
In summary, we have developed a novel silk fibroin-driven Cu–
Nx–C composite for oxidative coupling of terminal alkynes
under air condition without bases. The obtained composite
with high surface area, porous pore structure, small size of
highly dispersed Cu–Nx–C active sites and graphitic N exhibited
high performance towards Glaser-Hay coupling reaction with
excellent functional group tolerance and high yields.
26 C. Glaser, Ber. Dtsch. Chem. Ges. 1869, 2, 422.
27 A. S. Hay, J. Org. Chem. 1962, 27, 3320.
28 K. S. Sindhu and G. Anilkumar, RSC Adv. 2014, 4, 27867.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins