Journal of the American Chemical Society
Page 14 of 16
synthetic and mechanistic study. Chem. Eur. J. 2003, 9 (1), 249-
259.
aziridination and the importance of cooperative H-bonding.
Dalton Trans. 2011, 40 (21), 5697-5705.
1
2
3
4
5
6
7
8
39. Fantauzzi, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Macchi, P.; Casati,
N.; Cenini, S., Origin of the deactivation in styrene aziridination
by aryl azides, catalyzed by ruthenium porphyrin complexes.
Structural characterization of a Δ2-1,2,3-triazoline RuII(TPP)CO
complex. Organometallics 2005, 24 (20), 4710-4713.
40. Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.;
Cenini, S., The (porphyrin)ruthenium-catalyzed aziridination of
olefins using aryl azides as nitrogen sources. Eur. J. Org. Chem.
2007, 2007 (36), 6053-6059.
55. Subbarayan, V.; Jin, L.-M.; Cui, X.; Zhang, X. P., Room
temperature activation of aryloxysulfonyl azides by [Co(II)(TPP)]
for selective radical aziridination of alkenes via metalloradical
catalysis. Tetrahedron Lett. 2015, 56 (23), 3431-3434.
56. Tao, J.; Jin, L.-M.; Zhang, X. P., Synthesis of chiral N-
phosphoryl aziridines through enantioselective aziridination of
alkenes with phosphoryl azide via Co(II)-based metalloradical
catalysis. Beilstein J. Org. Chem. 2014, 10, 1282-1289.
57. Gao, G.-Y.; Jones, J. E.; Vyas, R.; Harden, J. D.; Zhang, X. P.,
Cobalt-catalyzed aziridination with diphenylphosphoryl azide
(DPPA): direct synthesis of N-phosphorus-substituted aziridines
from Alkenes. J. Org. Chem. 2006, 71 (17), 6655-6658.
58. Harden, J. D.; Ruppel, J. V.; Gao, G.-Y.; Zhang, X. P., Cobalt-
catalyzed intermolecular C–H amination with bromamine-T as
nitrene source. Chem. Commun. 2007, (44), 4644-4646.
59. Aguila, M. J. B.; Badiei, Y. M.; Warren, T. H., Mechanistic
insights into C–H amination via dicopper nitrenes. J. Am. Chem.
Soc. 2013, 135 (25), 9399-9406.
60. Iovan, D. A.; Wilding, M. J. T.; Baek, Y.; Hennessy, E. T.; Betley,
T. A., Diastereoselective C−H bond amination for disubstituted
pyrrolidines. Angew. Chem. Int. Ed. 2017, 56 (49), 15599-15602.
61. Broere, D. L. J.; de Bruin, B.; Reek, J. N. H.; Lutz, M.; Dechert,
S.; van der Vlugt, J. I., Intramolecular redox-active ligand-to-
substrate single-electron transfer: radical reactivity with a
palladium(II) complex. J. Am. Chem. Soc. 2014, 136 (33), 11574-
11577.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
41. King, E. R.; Hennessy, E. T.; Betley, T. A., Catalytic C−H bond
amination from high-spin iron imido complexes. J. Am. Chem.
Soc. 2011, 133 (13), 4917-4923.
42. Shing, K.-P.; Liu, Y.; Cao, B.; Chang, X.-Y.; You, T.; Che, C.-M.,
N-Heterocyclic
carbene
iron(III)
porphyrin-catalyzed
intramolecular C(sp3)–H amination of alkyl azides. Angew. Chem.
Int. Ed. 2018, 57 (37), 11947-11951.
43. Goswami, M.; Geuijen, P.; Reek, J. N. H.; de Bruin, B.,
Application of [Co(corrole)]– complexes in ring-closing C–H
amination of aliphatic azides via nitrene radical intermediates.
Eur. J. Inorg. Chem. 2017, 2018 (5), 617-626.
44. Bagh, B.; Broere, D. L. J.; Sinha, V.; Kuijpers, P. F.; van Leest, N.
P.; de Bruin, B.; Demeshko, S.; Siegler, M. A.; van der Vlugt, J. I.,
Catalytic synthesis of N-heterocycles via direct C(sp3)–H
amination using an air-stable iron(III) species with a redox-active
ligand. J. Am. Chem. Soc. 2017, 139 (14), 5117-5124.
45. King, E. R.; Sazama, G. T.; Betley, T. A., Co(III) imidos exhibiting
spin crossover and C–H bond activation. J. Am. Chem. Soc. 2012,
134 (43), 17858-17861.
46. Baek, Y.; Betley, T. A., Catalytic C–H amination mediated by
dipyrrin cobalt imidos. J. Am. Chem. Soc. 2019, 141 (19), 7797-
7806.
47. Yang, L.; Powell, D. R.; Houser, R. P., Structural variation in
copper(I) complexes with pyridylmethylamide ligands: structural
analysis with a new four-coordinate geometry index, 4. Dalton
Trans. 2007, (9), 955-964.
48. Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García,
J.; Cohen, A. J.; Yang, W., Revealing noncovalent interactions. J.
Am. Chem. Soc. 2010, 132 (18), 6498-6506.
49. Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.;
Piquemal, J.-P.; Beratan, D. N.; Yang, W., NCIPLOT: A program for
plotting noncovalent interaction regions. J. Chem. Theory
Comput. 2011, 7 (3), 625-632.
50. Neese, F. ORCA - An ab initio, density functional and
semiempirical electronic structure package, version 2.9-00;
Universitat Bonn: Bonn, Germany, 2009.
51. Das, A.; Chen, Y.-S.; Reibenspies, J. H.; Powers, D. C.,
Characterization of a Reactive Rh2 Nitrenoid by Crystalline Matrix
Isolation. J. Am. Chem. Soc. 2019, 141, 16232-16236.
52. Dash, C.; Yousufuddin, M.; Cundari, T. R.; Dias, H. V. R., Gold-
Mediated Expulsion of Dinitrogen from Organic Azides. J. Am.
Chem. Soc. 2013, 135, 15479-15488.
62. Powers, D. C.; Anderson, B. L.; Hwang, S. J.; Powers, T. M.;
Pérez, L. M.; Hall, M. B.; Zheng, S.-L.; Chen, Y.-S.; Nocera, D. G.,
Photocrystallographic
observation
of
halide-bridged
intermediates in halogen photoeliminations. J. Am. Chem. Soc.
2014, 136 (43), 15346-15355.
63. Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C., Direct
characterization of a reactive lattice-confined Ru2 nitride by
photocrystallography. J. Am. Chem. Soc. 2017, 139 (8), 2912-
2915.
64. Zheng, S.-L.; Pham, O.; Vande Velde, C. M. L.; Gembicky, M.;
Coppens, P., Competitive isomerization and dimerization in co-
crystals of 1,1,6,6-tetraphenyl-2,4-hexadiyne-1,6-diol and sorbic
acid: a new look at stereochemical requirements for [2+2]
dimerization. Chem. Commun. 2008, (22), 2538.
65. Zheng, S.-L.; Wang, Y.; Yu, Z.; Lin, Q.; Coppens, P., Direct
Observation of a Photoinduced Nonstabilized Nitrile Imine
Structure in the Solid State. J. Am. Chem. Soc. 2009, 131 (50),
18036-18037.
66. Abdelmoty, I.; Buchholz, V.; Di, L.; Guo, C.; Kowitz, K.;
Enkelmann, V.; Wegner, G.; Foxman, B. M., Polymorphism of
Cinnamic and α-Truxillic Acids:ꢀ New Additions to an Old Story.
Crystal Growth & Design 2005, 5 (6), 2210-2217.
67. More specifically, for the reactive fragment, all non-H atoms
of the product were located in the reaction-difference maps,
calculated with coefficients Fo(heat)-Fo(initial), and then refined
with restraints on the reacted fragment's bond lengths and
constraints of the atomic displacement parameters to the
corresponding values of the unreacted fragment. If necessary,
the restraints of the atomic displacement parameters have been
applied for such disorder refinement. For the non-reactive
fragment, the restraints on bond lengths, as well as the restraints
of the atomic displacement parameters, have been applied for
the disorder refinement as necessary. In order to get a
53. Jin, L.-M.; Lu, H.; Cui, Y.; Lizardi, C. L.; Arzua, T. N.; Wojtas, L.;
Cui, X.; Zhang, X. P., Selective radical amination of aldehydic
C(sp2)–H bonds with fluoroaryl azides via Co(II)-based
metalloradical catalysis: synthesis of N-fluoroaryl amides from
aldehydes under neutral and nonoxidative conditions. Chem. Sci.
2014, 5 (6), 2422-2427.
54. Olivos Suarez, A. I.; Jiang, H.; Zhang, X. P.; de Bruin, B., The
radical mechanism of cobalt(II) porphyrin-catalyzed olefin
14
ACS Paragon Plus Environment