Chemistry Letters Vol.34, No.8 (2005)
1103
Table 1. Novozym catalyzed kinetic resolution of 1 in various
solvents
The authors greatly appreciate the discussions and the gift of
CLEA given from Prof. Roger Sheldon and Dr. Rob Schoevaart
of CLEA Technologies.
(S)-1a (R)-3 Conv.b
Substrate/Conditions
E
ee/% ee/%
/%
References and Notes
1a
1a
1a
scCO2 9 MPa
Hexane
Non-solvent
45.8 99.9
32.9 >99.9
32.9 >99.9
31
25
25
>1000
>1000
>1000
1
P. G. Jessop, T. Ikariya, and R. Noyori, Nature, 368, 231
(1994); P. G. Jessop, T. Ikariya, and R. Noyori, Science,
269, 1065 (1995); P. G. Jessop, T. Ikariya, and R. Noyori,
Chem. Rev., 99, 475 (1999); M. F. Sellin, I. Bach, J. M.
1b
1b
1b
scCO2 9 MPa
Hexane
Non-solvent
90.2
75.3 >99.9
56.0 >99.9
99.8
48
43
36
>1000
>1000
>1000
´
Webster, F. Montilla, V. Rosa, T. Aviles, M. Poliakoff,
and D. J. Cole-Hamilton, J. Chem. Soc., Dalton Trans.,
2002, 4569; J. M. DeSimone, Science, 297, 799 (2002); B.
M. Bhanage, Y. Ikushima, M. Shirai, and M. Arai, Chem.
Commun., 1999, 1277.
1c
1c
1c
scCO2 9 MPa
Hexane
Non-solvent
80.4
57.0
57.1
96.1
98.5
97.9
46
37
37
125
230
167
2
a) T. Mori and Y. Okahata, Chem. Commun., 1998, 2215.
b) T. Mori, A. Kobayashi, and Y. Okahata, Chem. Lett.,
1998, 921. c) A. J. Mesiano, E. J. Beckman, and A. J.
Russell, Chem. Rev., 99, 623 (1999). d) Y. Ikushima, N.
Saito, M. Arai, and H. W. Blanch, J. Phys. Chem., 99,
8941 (1995). e) N. Mase, T. Sako, Y. Horikawa, and K.
Takabe, Tetrahedron Lett., 44, 5175 (2003). f) J. Ottosson,
L. Fransson, J. W. King, and K. Hult, Biochim. Biophys.
Acta, 1594, 325 (2002). g) M. D. Romeroa, L. Calvoa, C.
Albaa, M. Habulin, M. Primozic, and Z. Knez, J. Supercrit.
Fluids, 33, 77 (2005). h) E. Celia, E. Cernia, C. Palocci, S.
Soro, and T. Turchet, J. Supercrit. Fluids, 33, 193 (2005).
i) E. Catoni, E. Cernia, and C. Palocci, J. Mol. Catal. A:
Chem., 105, 79 (1996).
1d
1d
1d
scCO2 9 MPa
Hexane
Non-solvent
65.3
52.6 >99.9
18.9 97.4
99.6
40
34
16
>1000
>1000
92
1e
1e
1e
scCO2 9 MPa
Hexane
Non-solvent
30.6 >99.9
7.4 >99.9
3.8 >99.9
24
7
4
>1000
>1000
>1000
1f
1f
1f
scCO2 9 MPa
Hexane
Non-solvent
23.2 >99.9
10.5 >99.9
19
10
10
>1000
>1000
154
10.8
98.8
3
a) T. Matsuda, K. Watanabe, T. Harada, K. Nakamura, Y.
Arita, Y. Misumi, S. Ichikawa, and T. Ikariya, Chem.
Commun., 2004, 2286. b) T. Matsuda, R. Kanamaru, K.
Watanabe, T. Harada, and K. Nakamura, Tetrahedron Lett.,
42, 8319 (2001). c) T. Matsuda, R. Kanamaru, K. Watanabe,
T. Kamitanaka, T. Harada, and K. Nakamura, Tetrahedron:
Asymmetry, 14, 2087 (2003). d) T. Matsuda, T. Harada,
K. Nakamura, and T. Ikariya, Tetrahedron: Asymmetry, 16,
909 (2005).
Conditions: 40 ꢃC, 2 h, Enzyme: 5.0 mg, substrate: 100 mg,
vinyl acetate: 0.50 mL, solvents (scCO2 or hexane): 10 mL.
b
aRecovered alcohols. Conversion to 3 based on the starting
amount of 1. No detectable side reaction occurred. Higher
conversions were obtained with longer reaction times.
Table 2. CLEA (cross-linked enzyme aggregate) catalyzed ki-
netic resolution of 1a in various solvents
4
a) K. B. Hansen, J. R. Chilenski, R. Desmond, P. N. Devine,
E. J. J. Grabowski, R. Heid, M. Kubryk, D. J. Mathre, and
R. Varsolona, Tetrahedron: Asymmetry, 14, 3581 (2003).
b) D. Badone and U. Guzzi, Bioorg. Med. Chem. Lett., 4,
1921 (1994).
(S)-1aa (R)-3a Conv.b
Enzyme
Conditions
E
ee/% ee/%
CLEA103 scCO2 9 MPa 85.5 99.6
15.4 >99.9
34.2 99.5
/%
46
13
26
>1000
>1000
540
CLEA103 Hexane
CLEA103 Non-solvent
5
6
Lipase-catalyzed reaction in hexane is usually faster than
that in other hydrophilic solvents.
Visual inspection of the reaction mixture in an autoclave
equipped with sapphire windows showed that the reactants
and products were all soluble in scCO2 under the reaction
conditions at 9 and 13 MPa.
CLEA301 scCO2 9 MPa 93.8 >99.9
27.3 >99.9
52.8 99.5
48
21
35
>1000
>1000
624
CLEA301 Hexane
CLEA301 Non-solvent
Conditions are shown in Table 1. aRecovered alcohol.
bConversion to 3a based on the starting amount of 1a. No
detectable side reaction occurred.
7
8
K. Nakamura and T. Matsuda, J. Org. Chem., 63, 8957
(1998).
C.-S. Chen, Y. Fujimoto, G. Girdaukas, and C. J. Sih, J. Am.
Chem. Soc., 104, 7294 (1982). E value was used to evaluate
enantioselectivity and determined by using ee values of the
substrate (ees) and product (eep); Conv. ¼ ð1 ꢁ ðeep=
ðeep þ eesÞÞÞ ꢂ 100 E ¼ lnf1 ꢁ conv.=100 ꢂ ð1 þ eep=100Þg=
lnf1 ꢁ conv.=100 ꢂ ð1 ꢁ eep=100Þg.
tant for reactions by CLEA than that by Novozym; for CLEA re-
actions, the enzyme inside the aggregate probably catalyzed the
reaction more efficiently in scCO2 than in hexane or under non-
solvent conditions due to the high diffusivity of scCO2. The de-
gree of rate enhancement is also different between the substrates,
so the reasons are probably rather complex. The development
of methods to understand the mechanism are in progress in our
laboratory.
9
Personal communication with Dr. Rob Schoevaart.
10 K. Nakamura, T. Hoshino, and H. Ariyama, Agric. Biol.
Chem., 55, 2341 (1991).
11 O. Kajimoto, Chem. Rev., 99, 355 (1999).
Published on the web (Advance View) July 2, 2005; DOI 10.1246/cl.2005.1102