H. Adolfsson et al.
K. Hattori, I. Furokawa, Chem. Lett. 1998, 491–492; b) T. Ohta, S.
Nakahara, Y. Shigemura, K. Hattori, I. Furokawa, Appl. Organomet.
Chem. 2001, 15, 699–709; c) D. Carmona, F. J. Lahoz, R. Atencio,
L. A. Oro, M. P. Lamata, F. Viguri, E. San JosØ, C. Vega, J. Reyes, F.
Joó, . Kathó, Chem. Eur. J. 1999, 5, 1544–1564; d) . Kathó, D.
Carmona, F. Viguri, C. D. Remacha, J. Kovµcs, F. Joó, L. A. Oro, J.
Organomet. Chem. 2000, 593–594, 209–306; e) D. Carmona, M. P.
Lamata, F. Viguri, I. Dobrinovich, F. J. Lahoz, L. A. Oro, Adv.
Synth. Catal. 2002, 344, 499–502; f) D. Carmona, M. P. Lamata,
L. A. Oro, Eur. J. Inorg. Chem. 2002, 2239–2251; g) J. W. Faller,
A. R. Lavoie, Organometallics 2001, 20, 5245–5247; h) H. Y. Rhyoo,
Y.-A. Yoon, H.-J. Park, Y. K. Chung, Tetrahedron Lett. 2001, 42,
5045–5048; i) H. Y. Rhyoo, H.-J. Park, Y. K. Chung, Chem.
Commun. 2001, 2064–2065; j) H. Y. Rhyoo, H.-J. Park, W. H. Suh,
Y. K. Chung, Tetrahedron Lett. 2002, 43, 269–272.
Experimental Section
Computational methods—technical details: Geometry optimizations of
transition states and stable intermediates were carried out by using the
B3LYP functional[31] with the lacvp*/6-31G(d,p) basis set.[32, 33] All degrees
of freedom were optimized, and only positive vibrational frequencies
were obtained for the optimized geometries of the intermediates. The
transition states were characterized by the presence of only one imagina-
ry vibrational frequency along the appropriate normal mode. In the
second step, B3LYP energies were evaluated for the optimized geometry
by using the much larger triple-z basis set, lacv3p**+/6-311+G(d,p)
with additional diffuse and polarization functions. Control calculations
with respect to energy minimization and TS search were performed by
using the BP86 functional. No discrepancy between the results of the two
functionals was found for identical basis sets.
[15] Also known as the Noyori catalytic system. binap=1,1’-binaphtha-
lene-2,2’-diylbis(diphenylphosphane); dpen=1,2-diphenylethylene-
diamine.
[16] a) R. Hartmann, P. Chen, Angew. Chem. 2001, 113, 3693–3697;
Angew. Chem. Int. Ed. 2001, 40, 3581–3585; b) R. Hartmann, P.
Chen, Adv. Synth. Catal. 2003, 345, 1353–1359; c) similar cation ef-
fects on the catalytic activity of other RuII–diphosphine/1,2-diamine
complexes have recently been reported, see: J.-H. Xie, S. Liu, X.-H.
Huo, X. Cheng, H.-F. Duan, B.-M. Fan, L.-X. Wang, Q.-L. Zhou, J.
Org. Chem. 2005, 70, 2967–2973.
[17] M. Sawamura, Y. Ito, Chem. Rev. 1992, 92, 857–871.
[18] I. Yamada, M. Ohkouchi, M. Yamaguchi, T. Yamagishi, J. Chem.
Soc. Perkin Trans. 1 1997, 1869–1873.
[19] A. Bçrner, Eur. J. Inorg. Chem. 2001, 327–337.
[20] M. Prem, K. Polborn, W. Beck, Z. Naturforsch. B 1998, 53, 1501–
1505.
All computations were performed by using the Jaguar v4.0 and v6.0 suite
of ab initio quantum chemistry programs.[34] Frequency analysis of the TS
structures was performed by using Jaguar v6.0.
General procedure for the transfer hydrogenation of ketones by using
ligands 1–8: Ligand (0.011 mmol), [RuCl2(p-cymene)]2 (0.005 mmol), and
LiCl (0.1 mmol) (or other additives; see details in the tables) were dried
under vacuum in a dry Schlenk tube for 15 min. 2-Propanol (4.5 mL) and
a 0.01m solution of iPrONa (0.5 mL, 5 mol%) in iPrOH was added
under nitrogen. The solution was stirred for 5 min and then the ketone
(1 mmol) was added. The reaction mixture was stirred at ambient tem-
perature. Aliquots were taken after the reaction times indicated in the
tables and were then passed through a pad of silica with EtOAc as the
eluent. The resulting solutions were analyzed by GLC (CP Chirasil
DEXCB). For analytical data, see Supporting Information.
[21] Attempts to isolate and structurally characterize any ruthenium
complex(es) containing pseudo-dipeptide ligands have so far been
unsuccessful. Spectrometric studies (NMR and ESI-MS) of solutions
of the catalytically active mixture have provided no conclusive infor-
mation regarding the structure(s) of the catalyst or catalyst precur-
sor.
[22] C. F. de Graauw, J. A. Peters, H. van Bekkum, J. Huskens, Synthesis
1994, 1007–1017.
[23] Note that lithium bonds are generally considerably stronger than
their proton-centered counterparts, see: S. Scheiner in Lithium
Chemistry (Eds.: A.-M. Sapse, P. von R. Schleyer), Wiley, New York,
1995, pp. 67–87.
[24] a) S. Paavola, K. Zetterberg, T. Privalov, I. Csçregh, C. Moberg,
Adv. Synth. Catal. 2004, 346, 237–244; b) T. Privalov, C. Linde, K.
Zetterberg, C. Moberg, Organometallics 2005, 24, 885–893; c) M.
Schultz, R. Adler, W. Zierkiewicz, T. Privalov, M. Sigman, J. Am.
Chem. Soc. 2005, 127, 8499–8507; d) W. Zierkiewicz, T. Privalov,
Organometallics 2005, 24, 6019–6028.
Acknowledgements
We thank Professor Masakatsu Shibasaki of the University of Tokyo and
Professors Lena Mäler and Armando Córdova of the Stockholm Univer-
sity for valuable discussions. The Swedish Research Council and the
Wenner-Gren Foundation are thanked for financial support and a post-
doctoral fellowship (A.B.Z.), respectively.
[1] G. Zassinovich, G. Mestroni, S. Gladiali, Chem. Rev. 1992, 92, 1051–
1069.
[2] R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97–102.
[3] C. Bianchini, L. Glendenning, Chemtracts 1997, 10, 333–338.
[4] M. J. Palmer, M. Wills, Tetrahedron: Asymmetry 1999, 10, 2045–
2061.
[5] T. Ohkuma, R. Noyori in Comprehensive Asymmetric Catalysis I–
III, Vol. 1 (Eds.: E. N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer-
Verlag, Berlin, 1999, pp. 199–246.
[25] The TS structures were optimized with respect to convergence crite-
ria and the Hessian eigenvalues.
[26] These results were confirmed by the use of basis sets with additional
diffuse and polarization functions. There was a considerable differ-
ence between the structures obtained with the lacvp and lacvp*
basis sets. Upgrading the basis sets to lacvp* or lacvp*+ made little
difference.
[6] H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer,
Adv. Synth. Catal. 2003, 345, 103–151.
[7] K. Everaere, A. Mortreux, J.-F. Carpentier, Adv. Synth. Catal. 2003,
345, 67–77.
[8] T. Ohkuma, R. Noyori, Compr. Asymmetric Catal. Suppl. 2004, 1,
43–53.
[9] E. M. Vogl, H. Grçger, M. Shibasaki, Angew. Chem. Int. Ed. 1999,
38, 1570–1577.
[10] I. M. Pastor, P. Västilä, H. Adolfsson, Chem. Commun. 2002, 2046–
2047.
[11] I. M. Pastor, P. Västilä, H. Adolfsson, Chem. Eur. J. 2003, 9, 4031–
4045.
[12] A. Bøgevig, I. M. Pastor, H. Adolfsson, Chem. Eur. J. 2004, 10, 294–
302.
[13] P. Västilä, J. Wettergren, H. Adolfsson, Chem. Commun. 2005,
4039–4041.
[27] a) K.-J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori,
Angew. Chem. 1997, 109, 297–300; Angew. Chem. Int. Ed. Engl.
1997, 36, 285–288; b) M. Yamakawa, H. Ito, R. Noyori, J. Am.
Chem. Soc. 2000, 122, 1466–1478; c) R. Noyori, M. Yamakawa, S.
Hashiguchi, J. Org. Chem. 2001, 66, 7931–7944; d) M. Yamakawa, I.
Yamada, R. Noyori, Angew. Chem. Int. Ed. 2005, 44, 1241–1244.
[28] For other recent mechanistic discussions, see: a) D. A. Alonso, P.
Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999,
121, 9580–9588; b) D. G. I. Petra, J. N. H. Reek, J.-W. Handgraaf,
E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E. Schoemak-
er, P. W. N. M. van Leeuwen, Chem. Eur. J. 2000, 6, 2818–2829;
c) O. Pꢁmies, J.-E. Bäckvall, Chem. Eur. J. 2001, 7, 5052–5058;
d) C. P. Casey, J. B. Johnson, J. Org. Chem. 2003, 68, 1998–2001;
[14] For other examples of amino acid based ligands in the transfer hy-
drogenation of ketones, see: a) T. Ohta, S. Nakahara, Y. Shigemura,
3224
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 3218 – 3225