Wei Z., Xue D., Zhang H. and Guan J.
[
[
[
[
6] G. C. Fu, A. F. Littke, Angew. Chem. Int. Ed. 2002, 41, 4176.
7] a) F. Alonso, I. P. Beletskaya, M. Yus, Tetrahedron 2008, 64, –3047.
b] N. S. C. R. Kumar, I. V. P. Raj, A. Sudalai, J. Mol. Catal. A 2007, 269, 218.
8] A. Molnar (Ed), Palladium-Catalyzed Coupling Reactions, Wiley-VCH,
(
Table 4, entry 2). While arylsulfonyl chlorides with electron-poor
substituents such as F, Cl, CN, NO and CF groups were good
2
3
coupling partners (Table 4, entries 3–7). 3-Methoxy and 3-
trifluoromethyl were converted to the corresponding biaryls in 88
and 83% yields, respectively, under standard conditions (Table 4,
entries 8 and 9). The substrate scope of various sterically hindered
arylsulfonyl chlorides with phenyl trifluoroborate was explored,
with only slight decrease of efficiency (Table 4, entries 10–12). Treat-
ment of 1- and 2-naphthalenesulfonyl chloride with phenyl
trifluoroborate also provided the desired phenyl naphthalenes in
Weinheim, 2013.
[9] D. G. Hall (Ed), Boronic Acids: Preparation and Applications in Organic
Synthesis, Medicine and Materials, 2nd ed, Vol. 1, Wiley-VCH,
Weinheim, 2011.
10] H.-Y. Sun, D. G. Hall, Synthesis and Application of Organoboron
Compounds, Topics. in Organometallic Chemistry, Vol. 49 (Eds: E.
Fernández, A. Whiting), Springer, Heidelberg, 2014, p. 221.
11] S. Darses, J.-P. Genet, Eur. J. Org. Chem. 2003, 4313.
12] G. A. Molander, R. Figueroa, Aldrichimica Acta 2005, 38, 49.
13] H. A. Stefani, R. Cella, A. S. Vieira, Tetrahedron 2007, 63, 3623.
14] G. A. Molander, N. Ellis, Acc. Chem. Res. 2007, 40, 275.
[15] S. Darses, J.-P. Genet, Chem. Rev. 2008, 108, 288.
[16] H. A. Stefani, R. Cella, A. S. Vieira, Tetrahedron 2007, 63, 3623.
17] T. E. Barder, S. L. Buchwald, Org. Lett. 2004, 6, 2649.
18] G. A. Molander, S. R. Wisniewski, J. Org. Chem. 2014, 79, 6663.
19] A. Y. Shabalin, N. Y. Adonin, V. V. Bardin, V. N. Parmon, Tetrahedron
[
[
[
[
[
7
9 and 85% yields, respectively (Table 4, entries 13 and 14). The
tolerance of the hydroxyl, aldehyde, ketone and ester groups is es-
pecially significant, as successive functional group transformations
are hopeful (Table 4, entries 15–18). 2-Pyridylsulfonyl chloride can
be smoothly transferred to 2-phenylpyridine substrate, which has
been widely used in the field of C– H activation (Table 4, entry 19).
Heterocyclic compounds represent an important class of
chemicals ubiquitously found in natural products; in particular,
they are used as versatile substrates and manifest broad
biological and pharmaceutical properties. We further investi-
gated the application of this coupling method in the building
of heteroaryl–aryl bonds, even heteroaryl–heteroaryl bond
linkage. For instance, indole trifluoroborate was applied in
the formation of 1-methyl-5-phenyl-1H-indole with a yield of
[
[
[
2
014, 70, 3720.
[20] A. Joliton, E. M. Carreira, Org. Lett. 2013, 15, 5147.
21] N. Y. Adonin, D. E. Babushkin, V. N. Parmon, V. V. Bardin, G. A. Kostin,
V. I. Mashukov, H.-J. Frohn, Tetrahedron 2008, 64, 5920.
22] G. A. Molander, B. Canturk, L. E. Kennedy, J. Org. Chem. 2009, 74, 973.
23] L. Liu, Y. Dong, B. Pang, J. Ma, J. Org. Chem. 2014, 79, 7193.
[24] L. Liu, Y. Dong, N. Tang, Green Chem. 2014, 16, 2185.
[25] L. Zhang, T. Meng, J. Wu, J. Org. Chem. 2007, 72, 9346.
26] C. M. So, C. P. Lau, A. S. C. Chan, F. Y. Kwong, J. Org. Chem. 2008, 73,
731.
27] G. W. Kabalka, L.-L. Zhou, A. Naravane, Tetrahedron Lett. 2006, 47,
887.
[28] W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, J. Org. Chem. 2010, 75, 5109.
[
[
[
[
7
8
7
8%, and 5-phenyl-1H-tetrazole was prepared in a yield of
4%. Importantly, heteroaryl–heteroaryl structure can be con-
[
6
structed using this method, such as 3-(furan-3-yl)pyridine and
-(thiophen-3-yl) quinoline (Scheme 2).
[
[
29] C. M. So, C. P. Lau, F. Y. Kwong, Angew. Chem. Int. Ed. 2008, 47, 8059.
30] Z.-Y. Wang, Q.-N. Ma, R.-H. Lia, L.-X. Shao, Org. Biomol. Chem. 2013, 11,
3
7899.
[
31] S. Cacchi, E. Caponetti, M. A. Casadei, A. Di Giulio, G. Fabrizi, G. Forte,
Summary
A. Goggiamani, S. Moreno, P. Paolicelli, F. Petrucci, Green Chem. 2012,
14, 317.
The Pd-catalyzed cross-coupling of arylsulfonyl chlorides with aryl
trifluoroborates provides a versatile means for the construction of
biaryl motifs. The methodology complements the more established
methods for Suzuki cross-coupling. Considering the attractive
features of arylsulfonyl chloride substrates, and the coupling reac-
tion’s broad scope, we expect this methodology will prove useful
in synthesis and will further encourage the development of biaryl
synthetic transformations. Future work of a preliminary mechanistic
study is underway in our laboratory.
[32] B. Schmidt, F. Hoelter, Org. Biomol. Chem. 2011, 9, 4914.
[
[
33] J. Masllorens, I. Gonzalez, A. Roglans, Eur. J. Org. Chem. 2007, 158.
34] V. Gallo, P. Mastrorilli, C. F. Nobile, R. Paolillo, N. Taccardi, Eur. J. Inorg.
Chem. 2005, 582.
[
35] K. Cheng, B. Zhao, S. Hu, X.-M. Zhang, C. Qi, Tetrahedron Lett. 2013, 54,
6211.
[36] J.-J. Dai, J.-H. Liu, D.-F. Luo, L. Liu, Chem. Commun. 2011, 47, 677.
[
[
37] K. Yuan, J.-F. Soulé, H. Doucet, ACS Catal. 2015, 5, 978.
38] J. Aziz, S. Messaoudi, M. Alami, A. Hamze, Org. Biomol. Chem. 2014, 12,
9743.
[
[
[
[
[
[
[
39] P. Vogel, S. R. Dubbaka, Org. Lett. 2004, 6, 95.
40] P. Vogel, S. R. Dubbaka, J. Am. Chem. Soc. 2003, 125, 15292.
41] S. R. Dubbaka, P. Vogel, Adv. Synth. Catal. 2004, 346, 1793.
42] P. Vogel, S. R. Dubbaka, Chem. Eur. J. 2005, 11, 2633.
43] P. Vogel, S. R. Dubbaka, Tetrahedron Lett. 2006, 47, 3345.
44] T. Kashiwabara, M. Tanaka, Tetrahedron Lett. 2005, 46, 7125.
45] M. Luo, S. Zhang, X. Zeng, Z. Wei, D. Zhao, T. Kang, W. Zhang, M. Yan,
Synlett 2006, 1891.
Acknowledgements
The Science and Technology Research and Development Pro-
grams of Hebei Province, Zhangjiakou City (nos. 1411070B,
1511075B and 1411058I-23), the Youth Fund of Natural Science
of Hebei North University (no. Q2014006), the Major Project of
Hebei North University (no. ZD201304), Hebei Provincial Education
Department Youth Fund Projects (nos. QN2015148 and
QN2015007) and the Health Department of Hebei Province Project
[46] W. Zhang, F. Liu, K. Li, B. Zhao, Appl. Organometal. Chem. 2014, 28, 379.
[
47] X. Zhao, E. Dimitrijevic, V. M. Dong, J. Am. Chem. Soc. 2009, 131,
466.
48] J. Cheng, M. Zhang, S. Zhang, M. Liu, Chem. Commun. 2011, 47, 11522.
3
[
[49] K. Yuan, H. Doucet, Chem. Sci. 2014, 5, 392.
(
No.20160030).
[50] W. Zhang, F. Liu, B. Zhao, Appl. Organometal. Chem. 2015, 29, 524.
[51] G. J. Deng, X. Zhou, J. Luo, J. Liu, S. Peng, Org. Lett. 2011, 13, 1432.
[52] S. Liu, Y. Bai, X. Cao, F. Xiao, G. J. Deng, Chem. Commun. 2013, 49, 7501.
[53] Y. Xu, J. Zhao, X. Tang, W. Wu, H. Jiang, Adv. Synth. Catal. 2014, 356,
2029.
References
[
54] P. Forgione, D. H. Ortgies, A. Barthelme, S. Aly, B. Desharnais, S. Rioux,
[1] A. De Meijere, F. Diederich (Eds), Metal-Catalyzed Cross-Coupling
Synthesis 2013, 45, 694.
Reactions,, 2nd ed, Wiley-VCH, Weinheim, 2004.
[55] K. Cheng, S. Hu, B. Zhao, X.-M. Zhang, C. Qi, J. Org. Chem. 2013, 78, 5022.
[56] K. Cheng, H.-Z. Yu, B. Zhao, S. Hu, X.-M. Zhang, C. Qi, RSC Adv. 2014, 4,
57923.
[57] M. Luo, B. Rao, W. Zhang, L. Hu, Green Chem. 2012, 14, 3436.
[58] C. J. Li, H. Rao, L. Yang, Q. Shuai, Adv. Synth. Catal. 2011, 353, 1701.
[59] G. J. Deng, C. J. Li, J. Liu, X. Zhou, H. Rao, F. Xiao, Chem. Eur. J. 2011, 17,
7996.
[
[
2] R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417.
3] A. De Meijere, S. Bräse, M. Oestreich (Eds), Metal-Catalyzed Cross-
Coupling Reactions and More, Wiley-VCH, Weinheim, 2014.
4] T. J. Colacot (Ed), New Trends in Cross-Coupling Theory and Applications,
Royal Society of Chemistry, Cambridge, 2015.
[
[
5] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
wileyonlinelibrary.com/journal/aoc
Copyright © 2016 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. (2016)