2
58
B. Basu et al.
LETTER
Typical problems encountered during SM coupling reac-
tions using the base, such as saponification of esters or al-
dol-type condensations of carbonyl compounds limit the
functionality that can be present in the aryl moiety. To ex-
tend the scope of this reaction condition, couplings of aryl
(3) (a) Leadbeater, N. E.; Marco, M. Angew. Chem. Int. Ed.
003, 42, 1407. (b) Leadbeater, N. E.; Marco, M. J. Org.
2
Chem. 2003, 68, 5660. (c) Arvela, R. K.; Leadbeater, N. E.;
Sangi, M. S.; Williams, V. A.; Granados, P.; Singer, R. D.
J. Org. Chem. 2005, 70, 161.
(
4) (a) Yan, J.; Hu, W.; Zhou, W. Synth. Commun. 2006, 36,
2097. (b) Yan, J.; Zhou, Z.; Zhu, M. Synth. Commun. 2006,
36, 1495.
bromides bearing ketone (COMe), ester (CO Et) and OH
2
groups were studied (Table 1, entries 11, 12, 20 and 21).
The results from these reactions are listed in Table 1.
(5) (a) Molander, G. A.; Rivero, M. R. Org. Lett. 2002, 4, 107.
b) Molander, G. A.; Biolatto, B. J. Org. Chem. 2003, 68,
302. (c) Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J.
(
4
Activated aryl chlorides are known to undergo SM cou-
2
1
pling reactions. Using the immobilized borate we per-
Tetrahedron 2001, 57, 9925. (d) Kabalka, G. W.; Al-
Masum, M. Tetrahedron Lett. 2005, 46, 6329.
formed base-free couplings with activated aryl chlorides
successfully (Table 1, entries 21 and 22) in presence of
(6) (a) Kirschning, A.; Monenschein, H.; Wittenberg, R. Chem.
Eur. J. 2000, 6, 4445. (b) Keay, J. G.; Scriven, E. F. V.
Chem. Ind. (London) 1994, 53, 339. (c) Khound, S.; Das, P.
J. Tetrahedron 1997, 53, 9749.
(7) Farrall, M. J.; Fréchet, J. M. J. J. Org. Chem. 1976, 41, 3877.
(8) Frenette, R.; Friesen, R. W. Tetrahedron Lett. 1994, 35,
one equivalent of tetrabutylammonium salts (TBAB).22
Finally, we considered recycling the recovered resin in
SM coupling reactions. The formation of the desired ad-
duct was obtained in lower yield than in the first run,
which might be due to poor availability of the tetraphen-
ylborate counter anions. However, recharging the resin
and recycling the reaction was successfully achieved for
9177.
(9) For some recent examples, see: (a) Roller, S.; Turk, H.;
Stumbe, J.-F.; Rapp, W.; Haag, R. J. Comb. Chem. 2006, 8,
350. (b) Zheng, Y.; Stevens, P. D.; Gao, Y. J. Org. Chem.
2
3
five runs. Conducting reactions in aqueous medium can
be advantageous, particularly for large-scale industrial ap-
plications, as a result of ease of purification as well as the
environmental friendliness of water. The newly devel-
oped polyionic resins are equally effective in the aqueous-
medium SM reaction thereby offering greater scope for its
applications.
2
006, 71, 537. (c) Nielsen, T. E.; Quement, S. L.; Meldal,
M. Tetrahedron Lett. 2005, 46, 7959. (d) Brown, J. F.;
Krajnc, P.; Cameron, N. R. Ind. Eng. Chem. Res. 2005, 44,
8565. (e) Bork, J. T.; Lee, J. W.; Chang, Y.-T. Tetrahedron
Lett. 2003, 44, 6141. (f) Wade, J. V.; Krueger, C. A.
J. Comb. Chem. 2003, 5, 267. (g) Hebel, A.; Haag, R.
J. Org. Chem. 2002, 67, 9452.
(
10) As compared to other polymeric frameworks, examples
using solid polyionic resins to immobilize organoboron
species for use in SM couplings are limited. A few examples
on the immobilization of arylboronic acids are: (a) Wulff,
G.; Schmidt, H.; Witt, H.; Zentel, R. Angew. Chem., Int. Ed.
Engl. 1994, 33, 188. (b) Guiles, J. W.; Johnson, S. G.;
Murray, W. V. J. Org. Chem. 1996, 61, 5169. (c) Piettre, S.
R.; Baltzer, S. Tetrahedron Lett. 1997, 38, 1197. (d) Kell,
R. J.; Hodge, P.; Nisar, M.; Williams, R. T. J. Chem. Soc.,
Perkin Trans. 1 2001, 3403.
11) Lobrégat, V.; Alcaraz, G.; Bienayme, H.; Vaultier, M.
Chem. Commun. 2001, 817.
12) (a) Basu, B.; Das, S.; Das, P.; Nanda, A. K. Tetrahedron
Lett. 2005, 46, 8591. (b) Basu, B.; Das, P.; Das, S. Mol.
Diversity 2005, 9, 259. (c) Basu, B.; Bhuiyan, M. M. H.;
Das, P.; Hossain, I. Tetrahedron Lett. 2003, 44, 8931.
In summary, we have shown that polyionic resins may be
used for immobilizing tetraphenylborate as well as for ful-
filling the function of a base and the resulting species are
potential phenylating agents in the SM cross-coupling.
The reaction conditions offer an efficient and general
method for base-free SM cross-coupling reactions leading
to the formation of biaryls. Easy isolation of the desired
coupled products in high yields along with base- and
ligand-free conditions offer distinct advantages over the
direct use of corresponding alkali metal salts or phenylbo-
ronic acid. Further exploration of the methodology is un-
derway in this laboratory.
(
(
®
(
13) Amberlite IRA-900 resin (chloride form; 2.50 g) was
Acknowledgment
stirred with aq NaBPh (1.73 g) until complete exchange as
judged by Cl loss (AgNO ). The exchanged resin was
washed with H O, acetone and dried to give the tetra-
phenylborate-form resin (3.92 g). The mass difference
between product and starting materials (ca. 310 mg) was
comparable with the calculated difference (296 mg). The
resulting borate-bound resin thus contained a 1.14 mmol g
loading of the borate ions and was used directly in the SM
coupling reactions.
4
–
We are grateful to the Department of Science & Technology, New
Delhi for financial support (Grant No. SR/S1/OC–49/2006). S.D.
and B.M. thank CSIR, New Delhi for awarding senior research fel-
lowships.
3
2
–
1
References and Notes
(
1) For reviews, see: (a) Hassan, J.; Sevignon, M.; Gozzi, C.;
(
(
14) Suzuki, A. Chem. Commun. 2005, 4759.
15) (a) Miyaura, N.; Ishiyama, T.; Ishikawa, M.; Suzuki, A.
Tetrahedron Lett. 1986, 27, 6369. (b) Miyaura, N.;
Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki,
A. J. Am. Chem. Soc. 1989, 111, 314.
16) Gropen, O.; Haaland, A. Acta. Chem. Scand. 1973, 27, 521.
17) Miyaura, N.; Yamada, K.; Suginome, H.; Suzuki, A. J. Am.
Chem. Soc. 1985, 107, 972.
Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
(
b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002,
58, 9633. (c) Chemler, S. R.; Trauner, D.; Danishefsky, S. J.
Angew. Chem. Int. Ed. 2001, 40, 4544. (d) Suzuki, A.
J. Organomet. Chem. 1999, 576, 147. (e) Miyaura, N.;
Suzuki, A. Chem. Rev. 1995, 95, 2457. (f) Miyaura, N. Top.
Curr. Chem. 2002, 219, 11. (g) Bellina, F.; Carpita, A.;
Rossi, R. Synthesis 2004, 2419.
(
(
(
18) Darses, S.; Genet, J. P.; Brayer, J. L. Tetrahedron Lett. 1997,
(
2) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int.
Ed. 2005, 44, 4442.
37, 4393.
Synlett 2008, No. 2, 255–259 © Thieme Stuttgart · New York