10.1002/ejoc.201901858
European Journal of Organic Chemistry
and without the necessary for pre-activation of reactant.
Our research also provides a novel and efficient synthetic
method for the formation of amide on α,β-unsaturated
compound. Our future work will extend this efficient
functionalization strategy to other α,β-unsaturated bonds.
[3] a) T. Harayama, Y. Tezuka, T. Taga, F. Yoneda, J.
Chem. Soc., Perkin Trans. 1 1987, 75. b) J. B.
Townsend, F. Shaheen, R. Liu, K. S. Lam, J. Comb.
Chem. 2010, 12, 700. c) J. Unitt, M. Fagura, T. Phillips,
S. King, M. Perry, A. Morley, C. MacDonald, R.
Weaver, J. Christie, S. Barber, R. Mohammed, M. Paul,
A. Cook, A. Baxter, Bioorg. Med. Chem. Lett. 2011, 21,
2991.
Experimental Section
[4] J. Liu, D. Yang, X. Yang, M. Nie, G. Wu, Z. Wang, W.
Li, Y. Liu, P. Gong, Bioorg. Med. Chem. 2017, 25,
4475.
General Procedure for the carbamoylation of
Quinoxalin-2(1H)-ones
[5] Q. Zhong, R. Liu, G. Liu, Mol. Diversity 2015, 19, 829.
A
round-bottomed flask was charged with 1-
[6] C. De Savi, R. J. Cox, D. J. Warner, A. R. Cook, M. R.
Dickinson, A. McDonough, L. C. Morrill, B. Parker, G.
Andrews, S. S. Young, P. S. Gilmour, R. Riley, M. S.
Dearman, J. Med. Chem. 2014, 57, 4661.
methylquinoxalin-2(1H)-one (1a) (0.2 mmol, 0.0320 g), N-
phenylhydrazinecarboxamide (2a) (0.5 mmol, 0.0756 g),
BPO (0.6 mmol, 0.1453 g), CuI (0.02 mmol, 0.0038 g) and
o
DMSO (1.5 mL). Then, the mixture was stirred at 100 C
under air until the reaction was completed (monitored by
TLC). The cooled reaction mixture was added with ethyl
acetate (20 mL) and and saturated aqueous NaCl (20 mL),
then filtered by sintered funnel. The remaining aqueous
was extracted with ethyl acetate (20 mL×3). The combined
organic layers were dried with Na2SO4 and evaporated
under vacuum to afford the residue. The residue was
purified by column chromatography (silica gel) with
petroleum ether/ethyl acetate (3: 1) to obtain pure product
3aa as a yellow solid (70% yield).
[7] Y. Usuki, K. Mitomo, N. Adachi, X. Ping, K.-I. Fujita,
O. Sakanaka, K. Iinuma, H. Iio, M. Taniguchi, Bioorg.
Med. Chem. Lett. 2005, 15, 2011.
[8] J. Zhou, P. Zhou, T. Zhao, Q. Ren, J. Li, Adv. Synth.
Catal. 2019, 361, 5371.
[9] a) A. Gupta, M. S. Deshmukh, N. Jain, J. Org. Chem.
2017, 82, 4784. b) W. Wei, L. Wang, P. Bao, Y. Shao,
H. Yue, D. Yang, X. Yang, X. Zhao, H. Wang, Org.
Lett. 2018, 20, 7125.
[10] J. Yuan, J. Fu, J. Yin, Z. Dong, Y. Xiao, P. Mao, L. Qu,
Org. Chem. Front. 2018, 5, 2820-2828.
Acknowledgements
[11] L. Hu, J. Yuan, J. Fu, T. Zhang, L. Gao, Y. Xiao, P.
We are grateful to the National Science Foundation of China (No.
21572117), the Shandong Key Research Program (Nos.
2019JZZY021015,2019GHY112053) for their financial support.
We also are grateful to the Analytical Center for Structural
Constituent and Physical Property of Core Facilities Sharing
Platform, Shandong University for their technology and services
support.
Mao, L. Qu, Eur. J. Org. Chem. 2018, 30, 4113.
[12] a) K. Yin, R. Zhang, Org. Lett. 2017, 19, 1530. b) J.
Yuan, S. Liu, L. Qu, Adv. Synth. Catal. 2017, 359,
4197.
[13] a) J. Yuan, J. Fu, S. Liu, Y. Xiao, P. Mao, L. Qu, Org.
Biomol. Chem. 2018, 16, 3203. b) X. Zeng, C. Liu, X.
Wang, J. Zhang, X. Wang, Y. Hu, Org. Biomol. Chem.
2017, 15, 8929.
References
[1] a) L. Shi, H. Zhou, J. Wu, X. Li, Mini-Rev. Org. Chem.
2015, 12, 96. b) A. Carta, S. Piras, G. Loriga, G.
Paglietti, Mini-Rev. Med. Chem. 2006, 6, 1179. c) M.
Patel, R. J. McHugh, B. C. Cordova, R. M. Klabe, S.
Erickson-Viitanen, G. L. Trainor, J. D. Rodgers, Bioorg.
Med. Chem. Lett. 2000, 10, 1729. d) J. Son, J. Zhu, P.
Phuan, O. Cil, A. P. Teuthorn, C. K. Ku, S. Lee, A. S.
Verkman, M. J. Kurth, J. Med. Chem. 2017, 60, 2401
[14] M. Gao, Y. Li, L. Xie, R. Chauvin, X. Cui, Chem.
Commun. 2016, 52, 2846.
[15] L. Wang, Y. Zhang, F. Li, X. Hao, H. Zhang, J. Zhao,
Adv. Synth. Catal. 2018, 360, 3969.
[16] a) J. D. Majmudar, H. B. Hodges-Loaiza, K. Hahne, J.
L. Donelson, J. Song, L. Shrestha, M. L. Harrison, C. A.
Hrycyna, R. A. Gibbs, Bioorg. Med. Chem. 2012, 20,
283. b) V. Vagenende, T. Ching, R. Chua, N.
Thirumoorthi, P. Gagnon, ACS Appl. Mater. Interfaces
2013, 5, 4472. c) N. A. Biok, A. D. Passow, C. Wang,
C. A. Bingman, N. L. Abbott, S. H. Gellman,
Biochemistry 2019, 58, 4821.
[2] a) M. Patel, R. J. McHugh, B. C. Cordova, R. M. Klabe,
S. Erickson-Viitanen, G. L. Trainor, J. D. Rodgers,
Bioorg. Med. Chem. Lett. 2000, 10, 1729. b) J. Dudash,
Y. Zhang, J. B. Moore, R. Look, Y. Liang, M. P.
Beavers, B. R. Conway, P. J. Rybczynski, K. T.
Demarest, Bioorg. Med. Chem. Lett. 2005, 15, 4790. c)
J. Miyashiro, K. W. Woods, C. H. Park, X. Liu, Y. Shi,
E. F. Johnson, J. J. Bouska, A. M. Olson, Y. Luo, E. H.
Fry, V. L. Giranda, T. D. Penning, Bioorg. Med. Chem.
Lett. 2009, 19, 4050. d) Y. Zou, X. Qin, X. Hao, W.
Zhang, S. Yang, Y. Yang, Z. Han, B. Ma, C. Zhu,
Bioorg. Med. Chem. Lett. 2015, 25, 3924.
[17] a) C. E. Puerto Galvis, V. V. Kouznetsov, J. Org. Chem.
2019, 84, 15294. b) M. M. Pompeo, J. H. Cheah, M.
Movassaghi, J. Am. Chem. Soc. 2019, 141, 14411. c) T.
Che, Y. Wang, Z. Huang, J. Tan, Z. Huang, S. Chen,
Molecules 2018, 23, 493. d) M. D. Patil, G. Grogan, H.
Yun, ChemCatChem 2018, 10, 4797.
4
This article is protected by copyright. All rights reserved.