10.1002/anie.201904433
Angewandte Chemie International Edition
COMMUNICATION
Chem. Mater. 2017, 29, 1946-1963; d)Y. Liu, C. Li, Z. Ren, S. Yan, M.
R. Bryce, Nat. Rev. Mater. 2018, 3, 18020.
as very low efficiency roll-off showing high EQE= 22.8% at 500
cd/m2. The EL spectrum has a slighly red-shift because its f
value of P(DMAC-Ge)/ POPH increses to 1.6×10-2 (Figure 2b),
but it still locates in the sky-blue emission region. Moreover, the
high efficiency for this cohost device is attributed to chage
balance, which is supported by more balanced hole and electron
current (Figure S10) and higher γ value (0.99) (Table S3) as
compared to P(DMAC-Ge) based device. This successful cohost
strategy on device performance indicates that if we want to
construct a bipolar polymer host with high device efficiency but
without cohost, an electron transport moiety with
diphenylphosphine oxide could be a good candidate. Note that
although the ET of HIL (PEDOT:PSS) is low, a triplet energy
transfer from the EML to it does not occur since the emission
zones are located away from the HIL (Scheme S5 and Figure
S10). To the best of our knowledge, this device performance is
much higher than the reported state-of-the-art performance of
[2]
a)D. Song, S. Zhao, Y. Luo, H. Aziz, Appl. Phys. Lett. 2010, 97, 243304;
b)J. Zhang, D. Ding, Y. Wei, H. Xu, Chem Sci 2016, 7, 2870-2882.
T. Chatterjee, K.-T. Wong, Adv. Opt. Mater. 2018, 7, 1800565.
a)T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K. C.
Pan, C. L. Yi, C. L. Chung, K. T. Wong, C. C. Wu, Adv. Mater. 2016, 28,
6976-6983; b)C. K. Moon, K. Suzuki, K. Shizu, C. Adachi, H. Kaji, J. J.
Kim, Adv. Mater. 2017, 29, 1606448-1606448; c)P. Rajamalli, N.
Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W. Lin, C. H. Cheng, J.
Am. Chem. Soc. 2017, 139, 10948-10951; d)T.-L. Wu, M.-J. Huang, C.-
C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W. Chen-Cheng, H.-W. Lin, R.-S.
Liu, C.-H. Cheng, Nat. Photonics 2018, 12, 235-240; e)K. W. Tsai, M. K.
Hung, Y. H. Mao, S. A. Chen, Adv. Funct. Mater. 2019, 29.
S. Youn Lee, T. Yasuda, H. Nomura, C. Adachi, Appl. Phys. Lett. 2012,
101, 093306.
[3]
[4]
[5]
[6]
a)L. S. Cui, J. U. Kim, H. Nomura, H. Nakanotani, C. Adachi, Angew.
Chem. Int. Ed. Engl. 2016, 55, 6864-6868; b)J. S. Kang, T. R. Hong, H.
J. Kim, Y. H. Son, R. Lampande, B. Y. Kang, C. Lee, J.-K. Bin, B. S.
Lee, J. H. Yang, J. Kim, S. Park, M. J. Cho, J. H. Kwon, D. H. Choi, J.
Mater. Chem. C 2016, 4, 4512-4520.
the sky-blue TADF-polymer device (EQEmax
= 12.1% and
Bmax~6000 cd/m2),[27] and the solution-processed sky-blue TADF
OLEDs using small molecule as the host at the pratical
application range 500cd/m2, which shows serverly efficiency roll-
off (the EQE below 15%) and low Bmax (~2000 cd/m2) although
its EQEmax 25.8% is 1.7% higher than our device. Besides, the
EQEmax for our device is very close to the EQEmax 27.4% of dry-
processed TADF-OLED by using the same TADF dopant
DMAC-TRZ, but its CIE coordinates (0.21, 0.51) is within the
green emission region.[4a]
[7]
[8]
a)S. Haseyama, A. Niwa, T. Kobayashi, T. Nagase, K. Goushi, C.
Adachi, H. Naito, Nanoscale Res Lett 2017, 12, 268; b)T. Northey, J.
Stacey, T. J. Penfold, J. Mater. Chem. C 2017, 5, 11001-11009.
a)M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P.
Monkman, Nat Commun 2016, 7, 13680; b)M. Einzinger, T. Zhu, P. de
Silva, C. Belger, T. M. Swager, T. Van Voorhis, M. A. Baldo, Adv. Mater.
2017, 29, 1701987-1701987.
[9]
W. Zhang, J. Jin, Z. Huang, S. Zhuang, L. Wang, Sci Rep 2016, 6,
30178.
[10] Y. Zou, S. Gong, G. Xie, C. Yang, Adv. Opt. Mater. 2018, 6, 1800568.
[11] a)X. Zeng, J. Luo, T. Zhou, T. Chen, X. Zhou, K. Wu, Y. Zou, G. Xie, S.
Gong, C. Yang, Macromolecules 2018, 51, 1598-1604; b)Z. Ren, R. S.
Nobuyasu, F. B. Dias, A. P. Monkman, S. Yan, M. R. Bryce,
Macromolecules 2016, 49, 5452-5460.
In summary, the proposed novel polymer P(DMAC-Ge)
gives high ET of 2.86 eV allowing it be used as the host for sky-
blue TADF emitter and its symmetric arrangement provides low
polarizability making spectral blue-shift of the sky-blue emitting
TADF guest DMAC-TRZ and thus better blue color purity. In
addition, the external heavy-atom effect of Ge atom on host can
[12] a)Y. Yang, S. Wang, Y. Zhu, Y. Wang, H. Zhan, Y. Cheng, Adv. Funct.
Mater. 2018, 28, 1706916; b)Y. Wang, Y. Zhu, G. Xie, H. Zhan, C.
Yang, Y. Cheng, J. Mater. Chem. C 2017, 5, 10715-10720.
[13] Y. Hu, W. Cai, L. Ying, D. Chen, X. Yang, X.-F. Jiang, S. Su, F. Huang,
Y. Cao, J. Mater. Chem. C 2018, 6, 2690-2695.
promote spin-orbit coupling of the guest that enlarges its kRISC
,
suggesting that more triplet excitons can be harvested to
generate more delayed fluorescence. The sky-blue emitting
device of this host/guest pair gives the record-high EQE 24.1%
by further adopting the cohost strategy of P(DMAC-Ge)/ POPH
(70:30 by weight ratio) in the emitting layer. Thus, the present
study opens up a new promising design route of polymer host
for various TADF guests for highly efficient TADF PLED.
[14] W. L. Tsai, M. H. Huang, W. K. Lee, Y. J. Hsu, K. C. Pan, Y. H. Huang,
H. C. Ting, M. Sarma, Y. Y. Ho, H. C. Hu, C. C. Chen, M. T. Lee, K. T.
Wong, C. C. Wu, Chem. Commun. 2015, 51, 13662-13665.
[15] Y. T. Chang, S. Sharma, M. K. Hung, Y. H. Lee, S. A. Chen, Sci Rep
2016, 6, 38404.
[16] J. Ohshita, Org. Photonics Photovolt. 2016, 4, 52-59.
[17] J. C. Slater, J. Chem. Phys. 1964, 41, 3199-3204.
[18] J. Liu, L. Li, Q. Pei, Macromolecules 2011, 44, 2451-2456.
[19] C. Y. Chan, M. Tanaka, H. Nakanotani, C. Adachi, Nat Commun 2018,
9, 5036.
Acknowledgements
[20] S. Gage, D. Evans, M. Hodapp, H. Sorenson, Optoelectronics
Application Manual, New York: McGraw-Hill, 1977.
We thank the Ministry of Education and the Ministry of Science
and Technology for financial support through Projects
MOE106N502CE1, MOST-105-2633-M-007-003, MOST-105-
[21] a)B. L. Cotts, D. G. McCarthy, R. Noriega, S. B. Penwell, M. Delor, D. D.
Devore, S. Mukhopadhyay, T. S. De Vries, N. S. Ginsberg, ACS Energy
Letters 2017, 2, 1526-1533; b)C. M. Han, C. B. Duan, W. B. Yang, M. C.
Xie, H. Xu, Sci. Adv. 2017, 3, e1700904.
2119-M-007-017,
MOST-105-2221-E-007-134,
MOST-106-
2221-E-007-104, and MOST 107-2221-E-007-003.
[22] M. E. Vazquez, J. B. Blanco, B. Imperiali, J. Am. Chem. Soc. 2005, 127,
1300-1306.
[23] S. Gan, S. Hu, X. L. Li, J. Zeng, D. Zhang, T. Huang, W. Luo, Z. Zhao,
L. Duan, S. J. Su, B. Z. Tang, ACS Appl Mater Interfaces 2018, 10,
17327-17334.
Conflict of interest
The authors declare no conflict of interest.
[24] M. Rae, A. Fedorov, M. N. Berberan-Santos, J. Chem. Phys. 2003, 119,
2223-2231.
Keywords: polymer light-emitting diode (PLED), thermally
activated delayed fluorescence (TADF), high triplet energy,
heavy-atom effect, spin-orbit coupling
[25] Z. S. Romanova, K. Deshayes, P. Piotrowiak, J. Am. Chem. Soc. 2001,
123, 2444-2445.
[26] X. Ban, K. Sun, Y. Sun, B. Huang, S. Ye, M. Yang, W. Jiang, ACS Appl
Mater Interfaces 2015, 7, 25129-25138.
[27] S. Shao, J. Hu, X. Wang, L. Wang, X. Jing, F. Wang, J. Am. Chem. Soc.
2017, 139, 17739-17742.
[1]
a)H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012,
492, 234-238; b)M. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29,
1605444; c)Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee,
This article is protected by copyright. All rights reserved.