as the starting materials for the preparation of 2-arylbenzoxa-
zoles. There are few examples for 2-arylbenzoxazole for-
mation from 2-nitrophenols and aldehydes (or trimethyl
orthobenzoate) using large amount of metals as nitro group
Scheme 1. Different Pathways for the 2-Arylbenzoxazole
Formation
15
reductants. 2-Nitrophenols was also successfully coupled
with benzylic amines to give 2-arylbenzoxazoles under high
1
6
reaction temperatures (>200 °C).
Very recently, we and others developed various catalytic
systems for direct CꢀN bond formation from nitroarenes
1
7
18
and alcohols or cyclohexanones using the borrowing
1
9
hydrogen methodology (or hydrogen transfer). In this
process, nitroarenes were reduced in situ using the bor-
rowed hydrogen generated from the alcohol or cyclohex-
anone oxidation step. This method afforded a shortcut for
CꢀN bond formation using stable starting materials with-
out any external reducing reagent and oxidant. However,
noble catalysts such as ruthenium, palladium, or iridium
were used in most cases. The use of cheap and nontoxic
iron catalyst for CꢀN bond formation would be highly
2
0
desirable. Herein, we report an iron-catalyzed 2-arylben-
zoxazole formation from o-nitrophenols and benzylic
alcohols, affording the aryl-substituted benzoxazoles in
high yields (Scheme 1, c).
1
0
aldehyde under strong oxidative conditions (Scheme 1, b).
Recently, catalytic oxidative reactions using oxygen as the
terminal oxidant have received much attention. However,
these reactions require the use of large amounts of the
catalyst or excess base. To overcome these limitations,
Han et al. developed an aerobic oxidative synthesis of
We began our study by examining the reaction of
-nitrophenol (1a) and benzyl alcohol (2a) in toluene at
2
1
1
150 °C. When 2-nitrophenol reacted with 2.5 equiv of
benzyl alcohol in the absence of any catalyst, no desired
1
product 3a was obtained as determined by GC and H
2
-substituted benzoazoles catalyzed by 4-methoxy-TEMPO
1
2
using oxygen as the oxidant. Williams et al. developed
an iridium-catalyzed 2-arylbenzoxazole formation from
aldehydes and o-aminophenols even in the absence of
oxidant. Kobayashi et al. disclosed a supported Pt-
catalyzed aerobic oxidation of phenolic imines under very
1
mild conditions. In most cases, 2-aminophenols are used
NMR methods (Table 1, entry 1). Then various iron salts
were investigated for this reaction under similar reaction
conditions. FeSO Fe(NO ) , Fe O , and Fe (SO ) were
4
,
3 3
2
3
2
4 3
1
3
proved to be ineffective catalysts for this kind of transfor-
mation (entries 2ꢀ5). The desired product was obtained in
4
18% and 31% yields when ferrocene and Fe(acac) were
used (entries 6 and 7). The reaction yields could be further
3
(
9) For selected examples, see: (a) Evindar, G.; Batey, R. A. J. Org.
Chem. 2006, 71, 1802. (b) Bose, D. S.; Idrees, M. J. Org. Chem. 2006, 71,
261. (c) Itoh, T.; Mase, T. Org. Lett. 2007, 9, 3687. (d) Zou, B.; Yuan,
improved to 79% and 81% when 5 mol % of FeCl and
3
FeCl were employed (entries 8 and 9). Among the various
2
8
0
iron salts examined, dppf [1,1 -bis(diphenylphosphino)-
Q.; Ma, D. Angew. Chem., Int. Ed. 2007, 46, 2598. (e) Liu, F.; Ma, D.
J. Org. Chem. 2007, 72, 4884. (f) Chen, Y.; Xie, X.; Ma, D. J. Org. Chem.
007, 72, 9329. (g) Bonnamour, J.; Bolm, C. Org. Lett. 2008, 10, 2665. (h)
Viirre, R.; Evindar, G.; Batey, R. A. J. Org. Chem. 2008, 73, 3452. (i)
Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411. (j) Ma,
D.; Xie, S.; Xue, P.; Zhang, X.; Dong, J.; Jiang, Y. Angew. Chem., Int.
Ed. 2009, 48, 4222. (k) Saha, P.; Ramana, T.; Purkait, N.; Ali, M.; Paul,
R.; Punniyamurthy, T. J. Org. Chem. 2009, 74, 8719. (l) Ueda, S.;
Nagasawa, H. J. Org. Chem. 2009, 74, 4272. (m) Wang, H.; Wang, L.;
Shang, J.; Li, X.; Wang, H.; Gui, J.; Lei, A. W. Chem. Commun. 2012,
ferrocene] was the most effective, and its use resulted in
the formation of 3a in 82% yield (entry 10). The choice of
solvents was crucial for this reaction. The use of NMP,
2
(15) (a) Hari, A.; Karan, C.; Rodrigues, W. C.; Miller, B. L. J. Org.
Chem. 2001, 66, 991. (b) Lee, J. J.; Kim, J.; Jun, Y. M.; Kim, B. H.; Lee,
B. M. Tetrahedron 2009, 65, 8821.
4
8, 76.
(16) Nishioka, H.; Ohmori, Y.; Iba, Y.; Tsuda, E.; Harayama, T.
Heterocycles 2004, 64, 193.
(
10) (a) Bernardi, D.; Ba, L. A.; Kirsch, G. Synlett 2007, 2121. (b)
Benedi, C.; Bravo, F.; Uriz, P.; Fernandez, E.; Claver, C.; Castillon, S.
Tetrahedron Lett. 2003, 44, 6073. (c) Riadi, Y.; Azzalou, R.; Lazar, S.;
Mamouni, R.; Haddad, M.; Routier, S.; Guillaumet, G. Tetrahedron
Lett. 2011, 52, 3492. (d) Bose, D. S.; Idrees, M. Synthesis 2010, 398.
(17) (a) Feng, C.; Liu, Y.; Peng, S. M.; Shuai, Q.; Deng, G. J.; Li, C.-J.
Org. Lett. 2010, 12, 4888. (b) Liu, Y.; Chen, W.; Feng, C.; Deng, G. J.
Chem. Asian J. 2011, 6, 1142. (c) Luo, J. Y.; Wu, M. Y.; Xiao, F. H.;
Deng, G. J. Tetrahedron Lett. 2011, 52, 2706. (d) Cui, X. J.; Zhang, Y.;
Shi, F.; Deng, Y. Q. Chem.;Eur. J. 2011, 17, 2587. (e) Zanardi, A.;
Mata, J. A.; Peris, E. Chem.;Eur. J. 2011, 47, 6981. (f) Cano, R.;
Ram oꢀ n, D. J.; Yus, M. J. Org. Chem. 2011, 76, 5574. (g) Tang, C. H.; He,
L.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N. Chem.;Eur. J. 2011, 17,
7172. (h) Xiao, F.; Liu, Y.; Tang, C.; Deng, G. J. Org. Lett. 2012, 14, 984.
(18) Xie, Y.; Liu, S.; Liu, Y.; Wen, Y.; Deng, G. J. Org. Lett. 2012, 14,
1692.
(19) For reviews on borrowing hydrogen or hydrogen transfer, see:
(a) Watson, A.; Williams, J. M. J. Science 2010, 329, 635. (b) Whittlesey,
M. K.; Williams, J. M. J. Dalton Trans. 2009, 5, 753. (c) Guillena, G.;
Ram oꢀ n, D. G.; Yus, M. Chem. Rev. 2010, 110, 1611.
(20) (a) Plietker, B. Iron Catalysis in Organic Chemistry: Reactions
and Applications; Wiley-VCH: Weinheim, 2008. (b) Plietker, B. Iron
Catalysis: Fundamentals and Applications; Springer: Heideberg, 2011.
(e) Chen, F.; Shen, C.; Yang, D. Tetrahedron Lett. 2011, 52, 2128.
(f) Kangani, C.; Kelley, D.; Day, B. Tetrahedron Lett. 2006, 47, 6497.
(g) Wang, Y.; Sarris, K.; Sauer, D.; Djuric, S. Tetrahedron Lett. 2006, 47,
4
823. (h) Seijas, J.; Vazquez-Tato, M.; Carballido-Reboredo, M.;
Crecente-Campo, J.; Romar-Lopez, L. Synlett 2007, 313.
11) (a) Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M.
(
Org. Lett. 2003, 5, 3713. (b) Kidwai, M.; Bansal, V.; Saxena, A.; Aerryb,
S.; Mozumdar, S. Tetrahedron Lett. 2006, 47, 8049.
(
12) Chen, Y.; Qian, L.; Zhang, W.; Han, B. Angew. Chem., Int. Ed.
008, 47, 9330.
13) Blacker, A.; Farah, M.; Hall, M.; Marsden, S.; Saidi, O.;
Williams, J. M. J. Org. Lett. 2009, 11, 2039.
14) Yoo, W.; Yuan, H.; Miyamura, Kobayashi, S. Adv. Synth.
2
(
(
Catal. 2011, 353, 3085.
Org. Lett., Vol. 14, No. 11, 2012
2723