ACS Catalysis
Letter
with Aryl Halides under Mild Conditions (0 °C). J. Am. Chem. Soc.
2013, 135, 9548−9552. (c) Fernandez-Rodríguez, M. A.; Shen, Q.;
Hartwig, J. F. A General and Long-Lived Catalyst for the Palladium-
Catalyzed Coupling of Aryl Halides with Thiols. J. Am. Chem. Soc.
2006, 128, 2180−2181. (d) Alvaro, E.; Hartwig, J. F. Resting State
and Elementary Steps of the Coupling of Aryl Halides with Thiols
Catalyzed by Alkylbisphosphine Complexes of Palladium. J. Am.
Chem. Soc. 2009, 131, 7858−7868. (e) Beletskaya, I. P.; Ananikov, V.
P. Transition-Metal-catalyzed C−S, C−Se, and C−Te Bond
Formation via Cross-Coupling and Atom-Economic Addition
Reactions. Chem. Rev. 2011, 111, 1596−1636. (f) Bichler, P.; Love,
J. A. Organometallic Approaches to Carbon−Sulfur Bond Formation.
Top. Organomet. Chem. 2010, 31, 39−64.
species and oxidative insertion of aryl iodide resulted in the for-
mation of Ni(II) intermediate. Based on the above evidence,
a plausible mechanism for this Ni-catalytic electrochemical
thiolation is proposed. As illustrated in Figure 1E, a single
electron transfer (SET) oxidation of the thiol on anode pro-
duces the thiol radical cation F. Proton abstraction of F by
pyridine affords a thiol radical G with aryl disulfide 7. Mean-
while, a cathodic reduction of NiCl2·dtbbpy A delivers a Ni(0)-X
B followed by oxidative addition of aryl haide 1 to generate
Ar−Ni(II)-X species C, which traps the thiol radical G to
deliver a Ni(III)- complex D. Finally, reductive elimination of
D furnishes the cross-coupled product 3 with Ni(I)-X complex
E followed by cathodic reduction to regenerate Ni(0)-X B.
In summary, a robust electrochemistry facilitated nickel-
catalyzed C−S cross-coupling protocol has been developed.
The protocol affords both aryl and alkyl thiols with a wide
array of functionalized aryl and heteroaryl iodides under mild
conditions. The anodic and cathodic processes synergistically
harness radical-mediated nickel species of different oxidation
states in an undivided cell unit. Further study on Ullmann-type
thiolation is underway in our laboratory.
(4) Tyson, E. L.; Ament, M. S.; Yoon, T. P. Transition Metal
Photoredox Catalysis of Radical Thiol-Ene Reactions. J. Org. Chem.
2013, 78, 2046−2050.
(5) Oderinde, M. S.; Frenette, M.; Robbins, D. W.; Aquila, B.;
Johannes, J. W. Photoredox Mediated Nickel Catalyzed Cross-
Coupling of Thiols with Aryl and Heteroaryl Iodides via Thiyl
Radicals. J. Am. Chem. Soc. 2016, 138, 1760−1763.
(6) (a) Sperry, J. B.; Wright, D. L. The Application of Cathodic
Reductions and Anodic Oxidations in the Synthesis of Complex
Molecules. Chem. Soc. Rev. 2006, 35, 605−621. (b) Yoshida, J.-I.;
Kataoka, K.; Horcajada, R.; Nagaki, A. Modern Strategies in
Electroorganic Synthesis. Chem. Rev. 2008, 108, 2265−2299.
(c) Francke, R.; Little, R. D. Redox Catalysis in Organic Electrosyn-
thesis: Basic Principles and Recent Developments. Chem. Soc. Rev.
2014, 43, 2492−2521. (d) Sauermann, N.; Meyer, T. H.; Ackermann,
L. Electrochemical Cobalt-Catalyzed C−H Activation. Chem. - Eur. J.
2018, 24, 16209−16217.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthetic procedures and charaterization data (PDF)
(7) (a) Lips, S.; Wiebe, A.; Elsler, B.; Schollmeyer, D.; Dyballa, K.
M.; Franke, R.; Waldvogel, S. R. Synthesis of meta-Terphenyl-2, 2’-
diols by Anodic C−C Cross-Coupling Reactions. Angew. Chem., Int.
Ed. 2016, 55, 10872−10876. (b) Elsler, B.; Schollmeyer, D.; Dyballa,
K. M.; Franke, R.; Waldvogel, S. R. Metal- and Reagent-Rree Highly
Selective Anodic Cross-Coupling Reaction of Phenols. Angew. Chem.,
Int. Ed. 2014, 53, 5210−5213. (c) Schulz, L.; Enders, M.; Elsler, B.;
Schollmeyer, D.; Dyballa, K. M.; Franke, R.; Waldvogel, S. R.
Reagent- and Metal-Free Anodic C− C Cross-Coupling of Aniline
Derivatives. Angew. Chem., Int. Ed. 2017, 56, 4877−4881. (d) Kirste,
A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. Efficient Anodic and
Direct Phenol-Arene C−C Cross-Coupling: the Benign Role of Water
or Methanol. J. Am. Chem. Soc. 2012, 134, 3571−3576. (e) Kirste, A.;
Schnakenburg, G.; Stecker, F.; Fischer, A.; Waldvogel, S. R. Anodic
Phenol-Arene Cross-Coupling Reaction on Boron-Doped Diamond
Electrodes. Angew. Chem., Int. Ed. 2010, 49, 971−975. (f) Fu, N.; Li,
L.; Yang, Q.; Luo, S. Catalytic Asymmetric Electrochemical Oxidative
Coupling of Tertiary Amines with Simple Ketones. Org. Lett. 2017,
19, 2122−2125. (g) Wu, Z.-J.; Xu, H.-C. Synthesis of C3-fluorinated
Oxindoles through Reagent-Free Cross-Dehydrogenative Coupling.
Angew. Chem., Int. Ed. 2017, 56, 4734−4738.
(8) (a) Li, W.-C.; Zeng, C.-C.; Hu, L.-M.; Tian, H.-Y.; Little, R. D.
Efficient Indirect Electrochemical Synthesis of 2-Substituted Benzox-
azoles using Sodium Iodide as Mediator. Adv. Synth. Catal. 2013, 355,
2884−2890. (b) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.;
Suna, E.; Francke, R. Synthesis of Benzoxazoles using Electrochemi-
cally Generated Hypervalent Iodine. J. Org. Chem. 2017, 82, 11669−
11681. (c) Hayrapetyan, D.; Shkepu, V.; Seilkhanov, O. T.; Zhanabil,
Z.; Lam, K. Electrochemical Synthesis of Phthalides via Anodic
Activation of Aromatic Carboxylic Acids. Chem. Commun. 2017, 53,
8451−8454. (d) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K.
D.; Waldvogel, S. R. Electrochemical Synthesis of Benzoxazoles from
Anilides − a New Approach to Employ Amidyl Radical Intermediates.
Chem. Commun. 2017, 53, 2974−2977.
AUTHOR INFORMATION
Corresponding Author
ORCID
Author Contributions
All authors have given approval to the final version of the
manuscript.
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the National Natural Science
Foundation of China (Nos. 21472082, 21402088, and 21772085)
and the Fundamental Research Funds for the Central Universities
(No. 020514380148).
REFERENCES
■
(1) (a) Ullmann, F.; Bielecki, J. Ueber synthesen in der
biphenylreihe. Ber. Dtsch. Chem. Ges. 1901, 34, 2174−2185.
(b) Fanta, P. E. The Ullmann Synthesis of Biaryls. Synthesis 1974,
1974, 9−21. (c) Dai, L.-X. Ullmann Reaction, a Centennial Memory
and Recent RenaisSance-Related Formation of Carbon-Heteroatom
Bond. Prog. Chem. 2018, 30, 1257−1297.
(2) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C.
Copper Catalysed Ullmann Type Chemistry: from Mechanistic
Aspects to Modern Development. Chem. Soc. Rev. 2014, 43, 3525−
3550.
(9) (a) Morofuji, T.; Shimizu, A.; Yoshida, J. Electrochemical
Intramolecular C-H Amination: Synthesis of Benzoxazoles and
Benzothiazoles. Chem. - Eur. J. 2015, 21, 3211−3214. (b) Wu, J.;
Zhou, Y.; Zhou, Y.; Chiang, C.-W.; Lei, A. Electro-Oxidative C (sp3)−
H Amination of Azoles via Intermolecular Oxidative C(sp3)−H/N−
(3) (a) Hartwig, J. F. Evolution of a Fourth Generation Catalyst for
the Amination and Thioetherification of Aryl Halides. Acc. Chem. Res.
2008, 41, 1534−1544. (b) Uyeda, C.; Tan, Y.; Fu, G. C.; Peters, J. C.
A New Family of Nucleophiles for Photoinduced, Copper-Catalyzed
Cross-Couplings via Single-Electron Transfer: Reactions of Thiols
1633
ACS Catal. 2019, 9, 1630−1634