Communication
ChemComm
The spectra at early time points further clarify these observations Notes and references
(
Fig. S3, ESI†). In the synthesis with 1, just traces of 4 ML NPLs are
1
S. Ithurria and B. Dubertret, J. Am. Chem. Soc., 2008, 130,
1
present after 2 min, while with 2 and 3, they are much more evident.
This is seen from their absorption features at B510 nm. With 3
however, larger quantities of QDs are also observed early. As we have
6504–16505.
2 J. Joo, J. S. Son, S. G. Kwon, J. H. Yu and T. Hyeon, J. Am. Chem. Soc.,
006, 128, 5632–5633.
2
3
Y.-H. Liu, F. Wang, Y. Wang, P. C. Gibbons and W. E. Buhro, J. Am.
Chem. Soc., 2011, 133, 17005–17013.
15
recently shown, thin NPLs grow faster than thicker NPLs but are
less stable. Indeed, the thermodynamically most stable shape for
CdSe nanocrystals are quasi-spherical QDs. Hence, in all three
syntheses, 3 ML NPLs are expected to appear early but disappear
4 A. W. Achtstein, A. Schliwa, A. Prudnikau, M. Hardzei,
M. V. Artemyev, C. Thomsen and U. Woggon, Nano Lett., 2012, 12,
3151–3157.
5
6
7
8
9
S. Ithurria, M. D. Tessier, B. Mahler, R. Lobo, B. Dubertret and
A. Efros, Nat. Mater., 2011, 10, 936–941.
M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli and
H. V. Demir, ACS Nano, 2015, 9, 5041–5050.
A. Yeltik, S. Delikanli, M. Olutas, Y. Kelestemur, B. Guzelturk and
H. V. Demir, J. Phys. Chem. C, 2015, 119, 26768–26775.
C. E. Rowland, I. Fedin, H. Zhang, S. K. Gray, A. O. Govorov,
D. V. Talapin and R. D. Schaller, Nat. Mater., 2015, 14, 484–489.
J. Q. Grim, S. Christodoulou, F. Di Stasio, R. Krahne, R. Cingolani,
L. Manna and I. Moreels, Nat. Nanotechnol., 2014, 9, 891–895.
28
due to Ostwald ripening as the reaction proceeds. The released
CdSe] monomers can redeposit either on other 3 ML NPLs (Ostwald
[
ripening within a thickness population) or on thermodynamically
more stable 4 ML NPL seeds or QDs. In the synthesis with 1, in
which very little 4 ML NPLs or QDs are available, mainly lateral
28
Ostwald ripening within a thickness population is observed.
However, in the synthesis with 2, 4 ML NPL seeds are present in
sufficient quantities that the monomers mainly deposit on them,
leading after 9 min predominantly to 4 ML NPLs. In the synthesis
with 3, even though 4 ML NPL seeds are present, QDs are the most
abundant species. Over time, the material transferred from NPLs to
QDs only increases, driven by the high initial QD concentration.
1
0 C. She, I. Fedin, D. S. Dolzhnikov, A. Demorti `e re, R. D. Schaller,
M. Pelton and D. V. Talapin, Nano Lett., 2014, 14, 2772–2777.
1 E. Lhuillier, S. Pedetti, S. Ithurria, H. Heuclin, B. Nadal, A. Robin,
G. Patriarche, N. Lequeux and B. Dubertret, ACS Nano, 2014, 8,
1
3
813–3820.
1
2 Z. Chen, B. Nadal, B. Mahler, H. Aubin and B. Dubertret, Adv. Funct.
Mater., 2014, 24, 295–302.
These results demonstrate effects on nucleation by tailoring the 13 S. Ithurria, G. Bousquet and B. Dubertret, J. Am. Chem. Soc., 2011,
1
33, 3070–3077.
precursor reactivity via their molecular design.
1
4 B. Mahler, B. Nadal, C. Bouet, G. Patriarche and B. Dubertret, J. Am.
Chem. Soc., 2012, 134, 18591–18598.
In summary, we have identified bis(acyl) selenides (and
sulfides) as reactive organo-selenium precursors for nanocrystal 15 A. Riedinger, F. D. Ott, A. Mule, S. Mazzotti, P. N. Kn u¨ sel, S. J. Kress,
F. Prins, S. C. Erwin and D. J. Norris, Nat. Mater., 2017, 16, 743–748.
6 D. Chen, Y. Gao, Y. Chen, Y. Ren and X. Peng, Nano Lett., 2015, 15,
growth. We uncovered such species as intermediates during a
detailed analysis of the solvent-free synthesis of CdSe (CdS)
1
4477–4482.
NPLs. While we focused here on the selenides, we note that 17 M. Nasui, R. B. Mos, T. Petrisor Jr, M. S. Gabor, R. A. Varga,
L. Ciontea and T. Petrisor, J. Anal. Appl. Pyrolysis, 2011, 92, 439–444.
8 J. P. Kercher, E. A. Fogleman, H. Koizumi, B. Szt ´a ray and T. Baer,
J. Phys. Chem. A, 2005, 109, 939–946.
some of the bis(acyl) sulfides are commercially available. In
addition to the utility of these chalcogenide precursors in
1
liquid-phase synthesis of semiconductor nanocrystals, such pre- 19 M. P. Campos, M. P. Hendricks, A. N. Beecher, W. Walravens,
R. A. Swain, G. T. Cleveland, Z. Hens, M. Y. Sfeir and J. S. Owen,
cursors can provide tailored reactivity for studying the funda-
J. Am. Chem. Soc., 2017, 139, 2296–2305.
0 M. P. Hendricks, M. P. Campos, G. T. Cleveland, I. Jen-La Plante and
J. S. Owen, Science, 2015, 348, 1226–1230.
1 T. Qi, H.-Q. Yang, D. M. Whitfield, K. Yu and C.-W. Hu, J. Phys.
Chem. A, 2016, 120, 918–931.
2 Z. H. Sun, H. Oyanagi, H. Nakamura, Y. Jiang, L. Zhang, M. Uehara,
K. Yamashita, A. Fukano and H. Maeda, J. Phys. Chem. C, 2010, 114,
mentals of nucleation and growth of these materials.
2
2
2
This work was supported by ETH Research Grant ETH-38 14-
1
and by the Swiss National Science Foundation under Grant
No. 200021-165559. We are grateful to H. Sch o¨ nberg and
H. Gr u¨ tzmacher for technical assistance and discussion of
the TGA/DSC/EI-MS data. We thank V. Lin, K. McNeill, O.
1
0126–10131.
3 R. Garcia-Rodriguez and H. Liu, Chem. Commun., 2013, 49,
857–7859.
NMR and XRD measurements and K. Boldt for stimulating 24 H. Ishihara, M. Koketsu, Y. Fukuta and F. Nada, J. Am. Chem. Soc.,
2
7
7
Waser, F. Starsich, and S. Pratsinis for help with the Se
7
2001, 123, 8408–8409.
discussions. We utilized facilities at the Scientific Center for
Optical and Electron Microscopy (ScopeM) at ETH Zurich.
2
2
2
2
5 M. Koketsu, F. Nada, S. Hiramatsu and H. Ishihara, J. Chem. Soc.,
Perkin Trans. 1, 2002, 737–740.
6 J. S. Owen, E. M. Chan, H. T. Liu and A. P. Alivisatos, J. Am. Chem.
Soc., 2010, 132, 18206–18213.
7 H. T. Liu, J. S. Owen and A. P. Alivisatos, J. Am. Chem. Soc., 2007, 129,
Conflicts of interest
305–312.
8 F. D. Ott, A. Riedinger, D. R. Ochsenbein, P. N. Kn u¨ sel, S. C. Erwin,
The authors declare no competing financial interests.
M. Mazzotti and D. J. Norris, Nano Lett., 2017, 17, 6870–6877.
11792 | Chem. Commun., 2018, 54, 11789--11792
This journal is ©The Royal Society of Chemistry 2018