Paper
Dalton Transactions
1
9
the PBE GGA functional as implemented in PRIRODA 13
Y. Shi, Nat. Rev. Genet., 2012, 13, 343; (d) K. D. Meyer,
Y. Saletore, P. Zumbo, O. Elemento, C. E. Mason and
S. R. Jaffrey, Cell, 2012, 149, 1635; (e) Kirk-Othmer Encyclope-
dia of Chemical Technology, Wiley, New York, 4th edn, 1992,
p. 438.
2
0
21
DFT code. All electron basis sets (L1) comparable in quality
to the correlation consistent valence double-ζ plus polarisation
cc-PVDZ) basis sets of Dunning were used. All stationary geo-
metries were characterised by analytically calculated Hessian
(
matrix. Possible relativistic effects (for copper) were taken into
account via the Dyall Hamiltonian.
2 (a) H. T. Clarke, H. B. Gillespie and S. Z. Weisshaus, J. Am.
Chem. Soc., 1933, 55, 4571; (b) E. Farkas and C. J. Sunman,
J. Org. Chem., 1985, 50, 1110; (c) J. R. Harding, J. R. Jones,
S. Y. Lu and R. Wood, Tetrahedron Lett., 2002, 43, 9487;
(d) S. Kim, C. H. Oh, J. S. Ko, K. H. Ahn and Y. J. Kim,
J. Org. Chem., 1985, 50, 1927; (e) H. Alinezhad,
M. Tajbakhsh and R. Zamani, Synth. Commun., 2006, 36,
3609; (f) H. Alinezhad, M. Tajbakhsh, F. Salehian and
K. Fazli, Synth. Commun., 2010, 40, 2415; (g) M. Tanis and
G. Rauniyar, US Pat, 5105013, 1992; (h) M. Selva, P. Tundo
and A. Perosa, J. Org. Chem., 2002, 67, 9238; (i) P. Tundo
and M. Selva, Acc. Chem. Res., 2002, 35, 706; ( j) M. Selva,
P. Tundo and A. Perosa, J. Org. Chem., 2003, 68, 7374;
(k) M. Selva, P. Tundo and T. J. Foccardi, Org. Chem., 2005,
70, 2476; (l) M. Selva, A. Perosa, P. Tundo and D. Brunelli,
J. Org. Chem., 2006, 71, 5770; (m) M. Selva and A. Perosa,
Green Chem., 2008, 10, 457; (n) T. Oku, Y. Arita, H. Tsuneki
and T. Ikariya, J. Am. Chem. Soc., 2004, 126, 7368;
(o) Y. Zhao, S. W. Foo and S. Saito, Angew. Chem., Int. Ed.,
2011, 50, 3006.
3 (a) Carbon Dioxide as Chemical Feedstock, ed. M. Aresta,
Wiley-VCH, Wienheim, 2010; (b) M. Aresta, in Activation
of Small Molecules, ed. W. B. Tolman, Wiley-VCH, Wein-
heim, 2006, ch. 1; (c) D. H. Gibson, in Comprehensive
Coordination Chemistry-II, ed. J. A. McCleverty and
T. J. Meyer, Elsevier Ltd., Amsterdam, 2003, vol. 1,
section 1.30, p. 595.
4 O. Jacquet, X. Frogneux, C. D. N. Gomes and T. Cantat,
Chem. Sci., 2013, 4, 2127.
5 (a) Y. Li, X. Fang, K. Junge and M. Beller, Angew. Chem., Int.
Ed., 2013, 52, 9568; (b) Y. Li, I. Sorribes, T. Yan, K. Junge
and M. Beller, Angew. Chem., Int. Ed., 2013, 52, 12156.
2
2
The default, adaptively generated PRIRODA grid, corres-
ponding to an accuracy of the exchange–correlation energy per
atom (1 × 10− hartree) was decreased by a factor of 100 for
more accurate evaluation of the exchange–correlation energy.
Default values were used for the Self–Consistent–Field (SCF)
convergence and the maximum gradient for geometry optimi-
8
−
4
sation criterion (1 × 10 au), whereas the maximum displace-
ment geometry convergence criterion was decreased to 0.0018
au.
Translational, rotational, and vibrational partition func-
tions for thermal corrections to arrive at total Gibbs free ener-
gies were computed within the ideal-gas, rigid-rotor, and
harmonic oscillator approximations. The temperature used in
the calculations of thermochemical corrections was set to
2
98.15 K in all the cases.
Single-point (SP) energy evaluations. The energies were re-
evaluated at optimised geometries by means PBE GGA func-
2
3
tional as implemented in Gaussian 09 code. The effects from
2
4
dispersion were included via DFT-D3(BJ) correction term. All
electron def2-tzvpp basis sets of Ahlrichs groups were used
2
5
with corresponding density-fitting basis sets. The default
value for the SP SCF convergence was adopted. The “Integral
(
grid = ultrafine)” option was used for evaluation of the
exchange–correlation term.
Solvent effects. Electrostatic and non-electrostatic solvent
2
6
effects were estimated by means of SMD solvation model as
implemented in Gaussian 09 code. The internal program
values for toluene (dielectric constant, etc.) were adopted. A
standard state corresponding to 1 M ideal dilute solution was
used.
6
K. Beydoun, T. vom Stein, J. Klankermayer and W. Leitner,
Angew. Chem., Int. Ed., 2013, 52, 9554.
7
L. González-Sebastián, M. Flores-Alamo and J. J. García,
Organometallics, 2015, 34, 763.
Acknowledgements
The authors gratefully acknowledge the Royal Society (Univer-
sity Research Fellowship to C. S. J. C.), the EPSRC (DTG011 EP/
J500549/1) and the King Abdullah University of Science and
Technology for funding, and the EPSRC National Mass
Spectrometry Service Centre at Swansea University for HMRS
analyses.
8 (a) E. Blondiaux, J. Pouessel and T. Cantat, Angew. Chem.,
Int. Ed., 2014, 53, 12186; (b) S. Das, F. D. Bobbink,
G. Laurenczy and P. J. Dyson, Angew. Chem., Int. Ed., 2014,
53, 12876.
9 I. Sorribes, K. Junge and M. Beller, Chem. – Eur. J., 2014,
20, 7878.
10 S. Savourey, G. Lefèvre, J. Berthet and T. Cantat, Chem.
Commun., 2014, 50, 14033.
1
1 I. I. F. Boogaerts, G. C. Fortman, M. R. L. Furst,
C. S. J. Cazin and S. P. Nolan, Angew. Chem., Int. Ed., 2010,
49, 8674.
Notes and references
1
(a) J. M. Adams and S. Cory, Nature, 1975, 255, 28;
(
b) D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, 12 G. C. Fortman, A. M. Z. Slawin and S. P. Nolan, Organo-
M. Salmon-Divon, L. Ungar, S. Osenberg, K. Cesarkas, metallics, 2010, 29, 3966.
J. Jacob-Hirsch, N. Amariglio, M. Kupiec, R. Sorek and 13 L. Zhang, J. Cheng and Z. Hou, Chem. Commun., 2013, 49,
G. Rechavi, Nature, 2012, 485, 201; (c) E. L. Greer and 4782.
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015