2
8
M.R. Didgikar et al. / Journal of Molecular Catalysis A: Chemical 334 (2011) 20–28
lic Pd, therefore in the proposed mechanism formation of metallic
Pd is not shown. The mechanism speculated in Scheme 3 is based
on the formation carbamoyl species (species IV) as a key inter-
References
[
[
1] S.P. Gupte, R.V. Chaudhari, J. Catal. 114 (1988) 246–258.
2] B. Gabriele, R. Mancuso, G. Salerno, M. Costa, Top. Organomet. Chem. 18 (2006)
239–271.
mediate. A stoichiometric reaction between the Pd(OAc) (BipyDS)
2
complex and NaI showed formation of the active catalytic interme-
diate species II (see Step I in Scheme 3) also reported previously by
Mueller et al. [26]. It was observed that this reaction takes place at
room temperature, which was evident from the immediate color
change from faint yellow to dark brown upon addition of NaI. The
species II interacts with aniline from organic phase saturated with
CO generating HI and species III in which PhNH is coordinated to
Pd (Step II). Species III adds on one molecule of dissolved CO from
liquid phase forming carbamoyl species IV (Step III). As already sug-
gested by Gabriele et al. [4,24] formation of phenyl isocyanate (Step
IV) at this stage via -H elimination from species IV with liberation
of HI seems to be the most probable step. We do not however have
any experimental evidence for formation of intermediate phenyl
isocyanate under experimental conditions but it is postulated that
phenyl isocyanate is formed at the interface (omega phase) [27],
where it is isolated from water (phenyl isocyanate is highly reac-
tive towards compounds containing active hydrogen such as water)
[3] (a) A.A. Kelkar, D.S. Kolhe, S. Kanagasabapathy, R.V. Chaudhari, Ind. Eng. Chem.
Res. 31 (1992) 172–176;
(
b) P. Giannoccaro, C.F. Nobile, G. Moro, A. Laginestra, C. Ferragina, M.A. Mas-
succi, P. Patrono, J. Mol. Catal. 53 (1989) 349–357;
(c) Y.L. Sheludyakov, V.A. Golodov, Bull. Chem. Soc. Jpn. 57 (1984) 251–253;
(
(
(
d) P. Giannoccaro, J. Organomet. Chem. 336 (1987) 271–278;
e) P. Giannoccaro, Inorg. Chim. Acta 142 (1988) 81–84;
f) I. Pri-Bar, H. Alper, Can. J. Chem. 68 (1990) 1544–1547;
(g) K. Hiwatari, Y. Kayaki, K. Okita, T. Ukai, I. Shimizu, A. Yamamoto, Bull. Chem.
Soc. Jpn. 77 (2004) 2237–2250.
[
[
[
4] B. Gabriele, G. Salerno, R. Mancuso, M. Costa, J. Org. Chem. 69 (2004) 4741–4750.
5] F. Shi, J. Peng, Y. Deng, J. Catal. 219 (2003) 372–375.
6] S.A.R. Mulla, S.P. Gupte, R.V. Chaudhari, J. Mol. Catal. 67 (1991) L7–L10.
[7] P. Giannoccaro, E. De Giglio, M. Gargano, M. Aresta, C. Ferragina, J. Mol. Catal.
A: Chem. 157 (2000) 131–141.
[
8] (a) S. Kanagasabapathy, S.P. Gupte, R.V. Chaudhari, Ind. Eng. Chem. Res. 33
1994) 1–6;
(b) T.W. Leung, B.D. Dombek, J. Chem. Soc., Chem. Commun. (1992) 205–206;
c) S.B. Halligudi, K.N. Bhatt, M.M.T. Khan, J. Mol. Catal. 68 (1991) 261–267.
(
(
[
9] J.E. McCusker, A.D. Main, K.S. Johnson, C.A. Grasso, L. McElwee-White, J. Org.
Chem. 65 (2000) 5216–5222.
[10] (a) S. Fukuoka, M. Chono, M. Kohno, J. Org. Chem. 49 (1984) 1458–1460;
(
(
(
b) M. Liang, T.J. Lee, C.C. Huang, K.Y. Lin, J. Chin. Chem. Soc. 54 (2007) 885–892;
c) P. Toochinda, S.S.C. Chuang, Ind. Eng. Chem. Res. 43 (2004) 1192–1199;
d) S.S.C. Chuang, P. Toochinda, M.V. Konduru, ACS Symp. Ser. 766 (2001)
and has a life-time just enough to react with [PhNH ]I and aniline
3
to form DPU (Steps V and VI respectively). The mechanism predicts
that secondary amines cannot give isocyanate, this is also consis-
tent with the experimental results that the secondary amines are
not reactive towards urea synthesis [2,4,24,28]. Thus in Step IV,
136–148;
(
(
e) B.S. Wan, S.J. Liao, D.R. Yu, Appl. Catal. A: Gen. 183 (1999) 81–84;
f) F. Shi, Y. Deng, J. Catal. 211 (2002) 548–551.
[
11] F. Shi, Y. Deng, T. SiMa, H. Yang, Tetrahedron Lett. 42 (2001) 2161–2163.
[12] B.M. Bhanage, S.S. Divekar, R.M. Deshpande, R.V. Chaudhari, Org. Process Res.
Dev. 4 (2000) 342–345.
13] S. Anderson, E.C. Constable, K.R. Seddon, J.E. Turp, J.E. Baggott, M.J. Pilling, J.
Chem. Soc., Dalton Trans. (1985) 2247–2261.
14] G.J. ten Brink, I. Arends, R.A. Sheldon, Science 287 (2000) 1636–1639.
O
Pd(II) complex is reduced to (BipyDS)Pd (species V) without metal
precipitation. It is known that polycyclic nitrogen containing hete-
rocyclic ligands have ability to stabilize the excess electron density
[
O
on metal such as Pd by accepting electrons from metal in low
[
oxidation state [29]. Generated HI in Steps IV and V is then oxi-
dized by molecular oxygen to eliminate water and iodine (Step VII),
which according to what has been demonstrated by Gabriele et al.
[15] H. Ishii, M. Goyal, M. Ueda, K. Takeuchi, M. Asai, Appl. Catal. A: Gen. 201 (2000)
01–105.
1
[
16] F.A. Cotton, G. Wilkinson, M. Bochmann, C. Murillo, Advanced Inorganic Chem-
istry, 6th ed., John Wiley and Sons, Singapore, 2004, p. 551.
[
2,4,24,30] oxidize the species V re-generating the active catalytic
[17] M.N. Desai, J.B. Butt, J.S. Dranoff, J. Catal. 79 (1983) 95–103.
[
18] (a) A.B. Volynsky, A.Y. Stakheev, N.S. Telegina, V.G. Senin, L.M. Kustov, R. Wen-
nrich, Spectrochim. Acta Part B 56 (2001) 1387–1396;
species II. DPU being sparingly soluble in aqueous as well as organic
phase can be easily separated from reaction medium making
the entire process simple in catalyst–product separation point of
view.
(
b) V. Bondarenka, Z. Martunas, S. Kaciulis, L. Pandolfi, J. Electron Spectrosc.
Relat. Phenom. 131–132 (2003) 99–103;
c) V.I. Nefedov, Y.V. Kokunov, Y.A. Buslaev, M.A. Porai-Koshits, M.P.
(
Gustyakova, E.G. Il’in, Zh. Neorg. Khim. 18 (1973) 931–934.
19] S.J. Kerber, J.J. Bruckner, K. Wozniak, S. Seal, S. Hardcastle, T.L. Barr, J. Vac. Sci.
Technol. A 14 (1996) 1314–1320.
20] G. Kumar, J.R. Blackburn, R.G. Albrtdge, W.E. Moddeman, M.M. Jones, Inorg.
Chem. 11 (1972) 296–300.
[
[
[
4
. Conclusion
In summary, the application of water-soluble palladium com-
21] D.J. Diaz, A.K. Darko, L. McElwee-White, Eur. J. Org. Chem. (2007) 4453–4465.
plex catalyst system under aqueous-biphasic reaction conditions
has the advantage of easy recycle of catalyst and separation of prod-
uct from the reaction medium. The effect of process parameters on
DPU yield showed that the system is robust and free from any mass
transfer effects under the conditions of this investigation. A plau-
sible reaction mechanism has been proposed highlighting the role
of iodide promoter.
[22] F. Ragaini, J. Chem. Soc., Dalton Trans. (2009) 6251–6266.
[
[
23] P. Giannoccaro, C. Ferragina, M. Gargano, E. Quaranta, Appl. Catal. A: Gen. 375
2010) 78–84.
24] B. Gabriele, R. Mancuso, G. Salerno, M. Costa, Chem. Commun. (Cambridge, U.K.)
(2003) 486–487.
(
[25] P.M. Maitlis, A. Haynes, B.R. James, M. Catellani, G.P. Chiusoli, J. Chem. Soc.,
Dalton Trans. (2004) 3409–3419.
[
26] G. Mueller, M. Klinga, P. Osswald, M. Leskelae, B. Rieger, Z. Naturforsch. B: Chem.
Sci. 57 (2002) 803–809.
[
27] (a) D. Mason, S. Magdassi, Y. Sasson, J. Org. Chem. 56 (1991) 7229–7232;
(
b) G.D. Yadav, Y.B. Jadhav, Langmuir 18 (2002) 5995–6002.
Acknowledgement
[
[
28] P. Giannoccaro, J. Organomet. Chem. 470 (1994) 249–252.
29] E.C. Constable, Adv. Inorg. Chem. 30 (1986) 69–121.
MRD would like to acknowledge the CSIR, India for providing
the research fellowship.
[30] (a) B. Gabriele, G. Salerno, M. Costa, G.P. Chiusoli, Curr. Org. Chem. 8 (2004)
19–946;
9
(
(
b) B. Gabriele, G. Salerno, M. Costa, G.P. Chiusoli, J. Organomet. Chem. 687
2003) 219–228;
Appendix A. Supplementary data
(c) B. Gabriele, G. Salerno, M. Costa, Synlett (2004) 2468–2483;
(
(
d) B. Gabriele, M. Costa, G. Salerno, G.P. Chiusoli, J. Chem. Soc., Perkin Trans. 1
1994) 83–87.
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.molcata.2010.10.018.