C
T. Suzuki et al.
Letter
Synlett
proceeded rapidly to give the N-protected product 5d in
97% yield within 10 min (Scheme 2).15,16 The acceleration of
this reaction compared to that in CH2Cl2 (Table 2, entry 4) is
probably due to activation of the acylating reagent by hy-
drogen bonding with methanol.5a,b,d
Funding Information
This work was supported by the Japan Society for the Promotion of
Science (JSPS KAKENHI Grant Number 17K0821 to O.T.).
J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(1
7
K
0
8
2
1)
The observed stability of the present reagents in alcohol
(Table 1 and Scheme 2) should be very useful for protecting
highly polar amines that are insoluble in conventional sol-
vents such as CH2Cl2. Furthermore, N-protection of glucos-
amine, which contains multiple hydroxyl groups, in metha-
nol was conducted to confirm the N-selectivity of reagent 1
(Scheme 3). Thus, the reaction of glucosamine hydrochlo-
ride (11) with FmocSPy (1c) in the presence of Et3N in
methanol at room temperature proceeded to generate the
N-selectively protected compound 12, which, without isola-
tion, was acetylated to afford 13 in 82% yield. Notably, com-
pound 12 exhibits self-assembly on the surface of cancer
cells.17
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orti
n
gInformati
o
n
References and Notes
(1) Greene’s Protective Groups in Organic Synthesis; Wuts, P. G. M.,
Ed.; John Wiley & Sons: Hoboken, 2014, Chap. 8.
(2) For a review, see: (a) Subirós-Funosas, R.; Khattab, S. N.; Nieto-
Rodríguez, L.; El-Faham, A.; Albericio, F. Aldrichimica Acta 2013,
46, 21. See also: (b) Shimizu, M.; Sodeoka, M. Org. Lett. 2007, 9,
5231. (c) Khattab, S. N.; Subiós-Funosas, R.; El-Faham, A.;
Albericio, F. Tetrahedron 2012, 68, 3056. (d) Kumar, A.; Sharma,
A.; Haimov, E.; El-Faham, A.; de la Torre, B. G.; Albericio, F. Org.
Process Res. Dev. 2017, 21, 1533. (e) Du, F.; Zhou, Q.; Fu, Y.; Zhao,
H.; Chen, Y.; Chen, G. New J. Chem. 2019, 43, 6549. (f) Dobi, Z.;
Reddy, B. N.; Renders, E.; Van Raemdonck, L.; Mensch, C.; De
Smet, G.; Chen, C.; Bheeter, C.; Sergeyev, S.; Herrebout, W. A.;
Maes, B. U. W. ChemSusChem 2019, 12, 3103.
O
N
S
OCH2CCl3
1d (1.2 equiv)
OH
OH
OCH2CCl3
H
NH2
H HN
CH3OH, rt
(3) Zeng, R.; Bao, L.; Sheng, H.; Sun, L.; Chen, M.; Feng, Y.; Zhu, M.
RSC Adv. 2016, 6, 78576.
within 10 min
4
5d
97%
O
Scheme 2 N-Selective Troc-protection of phenylglycinol (4) in methanol
(4) Godoi, M.; Botteselle, G. V.; Rafique, J.; Rocha, M. S. T.; Pena, J.
M.; Braga, A. L. Asian J. Org. Chem. 2013, 2, 746.
(5) (a) Chankeshwara, S. V.; Chakraborti, A. K. Org. Lett. 2006, 8,
3259. (b) Gawande, M. B.; Branco, P. S. Green Chem. 2011, 13,
3355. (c) Giola, M. L.; Gagliardi, A.; Leggio, A.; Leotta, V.; Romio,
E.; Liguori, A. RSC Adv. 2015, 5, 63407. (d) Ingale, A. P.; More, V.
K.; Gangarde, U. S.; Shinde, S. V. New J. Chem. 2018, 42, 10142.
(6) For a review, see: (a) Mukaiyama, T. Angew. Chem., Int. Ed. Engl.
1976, 15, 94. See also: (b) Mukaiyama, T.; Matsueda, R.; Suzuki,
M. Tetrahedron Lett. 1970, 11, 1901. (c) Lloyd, K.; Young, G. T.
J. Chem. Soc. C 1971, 2890.
OH
Fmoc-SPy (1c)
(1.4 equiv)
OH
OH
O
HO
HO
O
HO
HO
OH
Et3N (1 equiv)
CH3OH, rt, 20 h
HN
H2N
• HCl
Fmoc
11
12
OAc
O
AcO
AcO
OAc
HN
O
(7) Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95,
4763.
Ac2O
O
pyridine
(8) (a) Corey, E. J.; Nicolaou, K. C. J. Am. Chem. Soc. 1974, 96, 5614.
(b) Corey, E. J.; Nicolaou, K. C.; Melvin, L. S. Jr. J. Am. Chem. Soc.
1975, 97, 653. (c) Corey, E. J.; Nicolaou, K. C.; Melvin, L. S. Jr.
J. Am. Chem. Soc. 1975, 97, 654. (d) Barry, C. S.; Bushby, N.;
Charmant, J. P. H.; Elsworth, J. D.; Harding, J. R.; Willis, C. L.
Chem. Commun. 2005, 5097.
82% 13
(2 steps)
Scheme 3 N-Selective protection of glucosamine in methanol
(9) (a) Hanessian, S.; Conde, J. J.; Lou, B. Tetrahedron Lett. 1995, 36,
5865. (b) Hanessian, S.; Mascitti, V.; Rogel, O. J. Org. Chem. 2002,
67, 3346. (c) Hanessian, S.; Wang, X.; Ersmark, K.; Del Valle, J. R.;
Klegraf, E. Org. Lett. 2009, 11, 4232.
(10) Muguruma, K.; Shirasaka, T.; Akiyama, D.; Fukumoto, K.;
Taguchi, A.; Takayama, K.; Taniguchi, A.; Hayashi, Y. Angew.
Chem. Int. Ed. 2018, 57, 2170.
(11) (a) Kumar, V. P.; Babu, V. S.; Yahata, K.; Kishi, Y. Org. Lett. 2017,
19, 2766. (b) Ai, Y.; Ye, N.; Wang, O.; Yahata, K.; Kishi, Y. Angew.
Chem. Int. Ed. 2017, 56, 10791. (c) Yahata, K.; Ye, N.; Ai, Y.; Iso,
K.; Kishi, Y. Angew. Chem. Int. Ed. 2017, 56, 10796.
(12) Kim, S.; Lee, J. I.; Yi, K. Y. Bull. Chem. Soc. Jpn. 1985, 58, 3570.
(13) Usami, S.; Suzuki, T.; Mano, K.; Tanaka, K. III; Hashimoto, Y.;
Morita, N.; Tamura, O. Synlett 2019, 30, 1561.
In conclusion, the highly nitrogen-selective protecting
reagents PySCO2R (1a–g) are readily available and storable.
The reaction of 1 is operationally very simple, involving
only the reaction of an amine with PySCO2R reagent in an
appropriate solvent under air at room temperature. Al-
though various reagents including ROCO-OSu and ROCO-NT
for protection of amino groups have been explored, the
present method provides a new option that should be espe-
cially useful for amines with limited availability, such as
amine groups of intermediates in the late stages of natural
product synthesis.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–D