Communication
ChemComm
as azobenzene and azoxybenzene (0.6% aniline conversion) com- Notes and references
2 x
pared with CeO (2.4% aniline conversion), indicating that CuO
on CeO2 will be effective for suppression of aniline coupling
reactions.
1
(a) R. Vanjari and K. N. Singh, Chem. Soc. Rev., 2015, 44, 8062;
(b) R. K. Grasselli and M. A. Tenhover, Ammoxidation, in Handbook
of Heterogeneous Catalysis, ed. G. Ertl, H. Kn ¨o zinger, F. Sch u¨ th and
J. Weitkamp, Wiley-VCH, Weinheim, 2nd edn, 2008, pp. 3489–3517;
Finally, to clarify the roles of CuOx species and CeO2 in
(
c) N. Dimitratos, J. A. Lopez-Sanchez and G. J. Hutchings, Chem.
CuO
Cu O, and physical mixture of CeO
conducted (Table S5, ESI†). Only CuO and only Cu
x
–CeO
2
catalyst, various reactions with only CuO, only
and CuO or Cu O were
O showed
Sci., 2012, 3, 20; (d) Y. Ishii, S. Sakaguchi and T. Iwahama, Adv.
Synth. Catal., 2001, 343, 305; (e) C. Limberg, Angew. Chem., Int. Ed.,
2
2
2
2
003, 42, 5932; ( f ) T. Punniyamurthy, S. Velusamy and J. Iqbal,
2
Chem. Rev., 2005, 105, 2329; (g) Y.-F. Liang and N. Jiao, Acc. Chem.
Res., 2017, 50, 1640; (h) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas
and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234; (i) L. Boisvert and
K. I. Goldberg, Acc. Chem. Res., 2012, 45, 899.
almost no conversion, indicating that Cu oxide species have
no activity for the reaction (Table S5, ESI†, entries 5 and 6).
The physical mixture of CeO2 and CuO or Cu O (Table S5,
2
2
Selected papers for homogeneous catalysts: (a) Y. Huang, T. Chen,
Q. Li, Y. Zhou and S.-F. Yin, Org. Biomol. Chem., 2015, 13, 7289;
(b) H. Xie, Y. Liao, S. Chen, Y. Chen and G.-J. Deng, Org. Biomol.
Chem., 2015, 13, 6944; (c) J. Zhang, E. Khaskin, N. P. Anderson,
P. Y. Zavalij and A. N. Vedernikov, Chem. Commun., 2008, 3625;
ESI†, entries 3 and 4) showed similar conversion to CeO and a
2
little improved selectivity compared with CeO . These results
2
indicate that Cu species located on CeO
the high selectivity. Considering that the yields with CuO
CeO , CeO and the physical mixture of CeO and Cu oxides
2
is indispensable for
x
–
(
d) M. Liu, T. Chen and S.-F. Yin, Catal. Sci. Technol., 2016, 6, 690;
(e) S.-i. Hirashima, T. Nobuta, N. Tada, T. Miura and A. Itoh, Org.
Lett., 2010, 12, 3645; ( f ) Y.-F. Liang, X. Li, X. Wang, Y. Yan, P. Feng
and N. Jiao, ACS Catal., 2015, 5, 1956; (g) J. Liu, X. Qiu, X. Huang,
X. Luo, C. Zhang, J. Wei, J. Pan, Y. Liang, Y. Zhu, Q. Qin, S. Song and
N. Jiao, Nat. Chem., 2019, 11, 71.
(a) L. Kesavan, R. Tiruvalam, M. H. Ab Rahim, M. I. bin Saiman,
D. I. Enache, R. L. Jenkins, N. Dimitratos, J. A. Lopez-Sanchez, S. H. Taylor,
D. W. Knight, C. J. Kiely and G. J. Hutchings, Science, 2011, 331, 195;
(b) X. Cui, F. Shi and Y. Deng, Chem. Commun., 2012, 48, 7586.
2
2
2
are similar (10–14%, Table S5, ESI†, entries 1–4) and that no
imine formation was observed over only Cu oxide species, the
oxidation of mesitylene will proceed mainly by the redox
property of CeO , and CuO species on CeO2 will mainly
3
2
x
contributed to improvement of the selectivity to the target
imine by suppression of the oxidative coupling of aniline.
1
0
3
4 (a) Y. Wang, K. Yamaguchi and N. Mizuno, Angew. Chem., Int. Ed.,
012, 51, 7250; (b) B. Dutta, S. Biswas, V. Sharma, N. O. Savage,
S. P. Alpay and S. L. Suib, Angew. Chem., Int. Ed., 2016, 55, 2171.
5 M. J. Climent, A. Corma and S. Iborra, Chem. Rev., 2011, 111, 1072.
6
7
According to our previous work, sp C–H activation of
methylarenes will proceed by the lattice oxygen over CeO
2
2
.
1
2
On the other hand, according to the previous reports on
oxidative coupling of aniline over Ag nanoparticle, Cu–Mn
R. D. Patil and S. Adimurthy, Asian J. Org. Chem., 2013, 2, 726.
(a) L. L. Santos, P. Serna and A. Corma, Chem. – Eur. J., 2009,
15, 8196; (b) T. Schwob and R. Kempe, Angew. Chem., Int. Ed., 2016,
55, 15175; (c) C. B ¨a umler and R. Kempe, Chem. – Eur. J., 2018,
2
À
spinel oxide and RuO /Cu O nanoparticle, superoxide (O
)
2
2
formed on the catalyst was proposed to be the active species
for formation of aniline radical. It was also reported that
2
4, 8989.
(a) L. Vivier and D. Duprez, ChemSusChem, 2010, 3, 654;
b) T. Montini, M. Melchionna, M. Monai and P. Fornasiero, Chem.
8
9
superoxide can be formed on the defect site of CeO
2
by
(
1
3
addition of O
2
.
Based on them, one possible explanation
Rev., 2016, 116, 5987; (c) C. Sun, H. Li and L. Chen, Energy Environ.
Sci., 2012, 5, 8475; (d) T. Sahu, S. S. Brisht, K. R. Das and S. Kerkar,
Curr. Nanosci., 2013, 9, 588.
(a) Y. Wang, F. Wang, Q. Song, Q. Xin, S. Xu and J. Xu, J. Am. Chem.
Soc., 2013, 135, 1506; (b) M. Tamura, H. Wakasugi, K.-I. Shimizu and
A. Satsuma, Chem. – Eur. J., 2011, 17, 11428; (c) Y. Wang, F. Wang,
C. Zhang, J. Zhang, M. Li and J. Xu, Chem. Commun., 2014, 50, 2438;
(d) S. Zhang, Z.-Q. Huang, Y. Ma, W. Gao, J. Li, F. Cao, L. Li,
C.-R. Chang and Y. Qu, Nat. Commun., 2017, 8, 15266; (e) A. Rapeyko,
M. J. Climent, A. Corma, P. Concepcion and S. Iborra, ACS Catal.,
for the suppression of the oxidative coupling of aniline is that
the active species such as superoxide for formation of aniline
radical was decreased by addition of CuO
x
species because the
imine formation amount was almost constant even by addi-
tion of Cu species (Fig. 1 and Table S5, ESI†), and CuO species
x
may fill the defect site of CeO or suppress the formation of
2
superoxide by the redox property. Further investigations on
characterization of the catalyst, kinetic studies and DFT
calculations are necessary to clarify the detailed reaction
2
016, 6, 4564; ( f ) A. Leyva-P ´e rez, D. C ´o mbita-Merch ´a n, J. R. Cabrero-
Antonino, S. I. Al-Resayes and A. Corma, ACS Catal., 2013, 2, 250;
(g) Z. Zhang, Y. Wang, M. Wang, J. Lu, C. Zhang, L. Li, J. Jiang and
F. Wang, Catal. Sci. Technol., 2016, 6, 1693; (h) A. Bansode and
A. Urakawa, ACS Catal., 2014, 4, 3877; (i) M. Honda, M. Tamura,
Y. Nakagawa, S. Sonehara, K. Suzuki, K.-I. Fujimoto and K. Tomishige,
ChemSusChem, 2013, 6, 1341; ( j) L. Geng, J. Song, Y. Zhou, Y. Xie,
J. Huang, W. Zhang, L. Peng and G. Liu, Chem. Commun., 2016,
mechanism over CuO
We found that CuO
x
–CeO
–CeO
2
2
catalyst.
x
acted as an effective and reusable
heterogeneous catalyst for direct imine formation from methyl-
arenes and anilines with air (0.1 MPa) as an oxidant, giving the
52, 13495.
aromatic imines in high yields (up to 94%). The high activity for
10 M. Tamura and K. Tomishige, Angew. Chem., Int. Ed., 2015, 54, 864.
3
the sp C–H bond oxidation of methylarenes will be mainly 11 (a) Z. Zhang, Y. Wang, M. Wang, J. L u¨ , L. Li, Z. Zhang, M. Li, J. Jiang
and F. Wang, Chin. J. Catal., 2015, 36, 1623; (b) H. Zhang, C. Wub,
2
attributed to CeO catalysis and high selectivity can be attri-
buted to Cu oxide species on CeO .
2
W. Wang, J. Bu, F. Zhou, B. Zhang and Q. Zhang, Appl. Catal., B,
018, 227, 209; (c) H. Ding, J. Yang, S. Ma, N. Yigit, J. Xu,
2
This work was supported by Grant-in-Aid for Young
Scientists (A) (16H06129) from JSPS. We thank Ms Hirai and
Prof. Toyao (Hokkaido University) for STEM measurements.
G. Rupprechter and J. Wang, ChemCatChem, 2018, 10, 4100.
2 (a) S. Cai, H. Rong, X. Yu, X. Liu, D. Wang, W. He and Y. Li, ACS
Catal., 2013, 3, 478; (b) S. Sultan, M. Kumar, S. Devari, D. Mukherjee
and B. A. Shah, ChemCatChem, 2016, 8, 703; (c) A. Saha, S. Payra,
B. Selvaratnam, S. Bhattacharya, S. Pal, R. T. Koodali and
S. Banerjee, ACS Sustainable Chem. Eng., 2018, 6, 11345.
3 (a) J. Soria, A. Mart ´ı nez-Arias and J. C. Conesa, J. Chem. Soc.,
Faraday Trans., 1995, 91, 1669; (b) G. Preda, A. Migani, K. M. Neyman,
S. T. Bromley, F. Illas and G. Pacchioni, J. Phys. Chem. C, 2011,
115, 5817.
1
1
Conflicts of interest
There are no conflicts to declare.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020