4
Tetrahedron
14. Mahdavinia, G. H.; Bigdeli, M. A. Chin. Chem. Lett. 2009, 20,
383–386.
15. Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Bioorg. Med.
Chem. Lett. 2008, 18, 788–792.
protocol offers several advantages such as high yields,
reduced reaction time, easy work-up and handling. The method
is environmentally safe and catalyst is recyclable.
16. Wang, M.; Liang, Y.; Zhang, T. T.; Gao, J. J. Chem. Nat.
Compd. 2012, 48, 185–188.
17. Shaterian, H. R.; Yarahmadi, H.; Ghashang, M. Tetrahedron
2008, 64, 1263–1269.
18. Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. Tetrahedron
Lett. 2009, 50, 7220–7222.
19. Kundu, D.; Majee, A.; Hajra, A. Catal. Commun. 2010, 11,
1157–1159.
20. Ghorbani-Vaghei, R.; Malaekehpour, S. M. Cent. Eur. J. Chem.
2010, 8, 1086–1089.
21. Sabitha, G.; Arundhathi, K.; Sudhakar, K.; Sastry, B. S.;
Yadav, J. S. J. Heterocycl. Chem. 2010, 47, 272–275.
22. Zali, A.; Shokrolahi, A. Chin. Chem. Lett. 2012, 23, 269-272.
23. Jinjin, T.; Hongyun, G.; Hongbin, S. Chin. J. Org. Chem.
2011, 31, 1909-1913.
24. Singh, R. K.; Bala, R.; Duvedi, R.; Kumar, S. Iran. J. Catal.
2015, 5, 187-206.
25. Szatmari, I.; Hetenyi, A.; Lazar, L.; Fulop, F. J. Heterocycl.
Chem. 2004, 41, 367–373.
26. Cimarelli, C.; Palmieri, G.; Volpini, E. Can. J. Chem. 2004, 82,
1314–1321.
Figure 3: Recyclability of catalyst
27. (a) Kundu, S.; Basu. B. RSC Adv. 2015, 5, 50178-50185; (b)
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H.
Chem. Rev. 2014, 114, 6179–6212; (c) Dreyer, D. R.; Todd, A.
D.; Bielawski, C. W. Chem. Soc. Rev. 2014, 43, 5288–5301; (d)
Su, C.; Loh, K. P. Acc. Chem. Res. 2013, 46, 2275–2285;
(e )Kumar, A. V.; Rao, K. R. Tetrahedron Lett. 2011, 52, 5188-
5191.
Acknowledgement
The authors are thankful to Department of Chemistry,
University of Jammu for providing all necessary facilities and
Department of Science and Technology, Government of India,
New Delhi for NMR facility under PURSE and INSPIRE
fellowship [AG].
28. Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,
1339-1339.
29. Szabo, T.; Tombacz, E.; Illes, E.; Dekany, I. Carbon 2006, 44,
537-545.
References
1.
Shen, A. Y.; Tsai, C. T.; Chen, C. L. Eur. J. Med. Chem. 1999,
34, 877–882.
30. (a) Huang, H.; Huang, J.; Liu, Y. -M.; He, H. -Y.; Cao, Y.; Fan,
K. -N. Green Chem. 2012, 14, 930-934; (b) Dreyer, D. R.; Jia,
H. -P.; Todd, A. D.; Jeng, G.; Bielawski, C. W. Org. Biomol.
Chem. 2011, 9, 7292-7295; (c) Jia, H. -P.; Dreyer, D. R.;
Bielawski, C. W. Tetrahedron 2011, 67, 4431-4434; (d) Dreyer,
D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev.
2010, 39, 228-240;(e) Dreyer, D. R.; Jia, H. -P.; Bielawski, C.
W. Angew. Chem. Int. Ed. 2010, 49, 6813-6816.
31. (a) Gupta, A.; Khajuria, R.; Kapoor, K. K. Synth. Commun.
2016, 46, 31-38; (b) Saini, Y.; Khajuria, R.; Rana, L. K.;
Hundal, M. S.; Gupta, V. K.; Kant, R.; Kapoor, K. K.
Tetrahedron, 2016, 72, 257-263; (c) Khajuria, R.; Kannaboina,
P.; Kapoor, K. K.; Gupta, A.; Raina, G.; Jassal, A. K.; Rana, L.
V.; Hundal, M. S.; Das, P. Org. Biomol. Chem. 2015, 13, 5944-
5954; (d) Mahajan. S.; Sharma, B.; Kapoor, K. K. Tetrahedron
Lett. 2015, 56, 1915-1918; (e) Khajuria, R.; Saini, Y.; Kapoor,
K. K. Tetrahedron Lett. 2013, 54, 5699-5702.
2.
(a) Cimarelli, C.; Fratoni, D.; Palmieri, G. Synth. Commun.
2009, 39, 3184-3190; (b) Li, X.; Yeung, C. –H.; Chan, A. S. C.;
Yang, T. –K. Tetrahedron: Asymmetry 1999, 10, 759–763; (c)
Hulst, R.; Heves, H.; Peper, N. C. M. W.; Kellogg, R. M.
Tetrahedron: Asymmetry 1996, 7, 1373–1384.
3.
4.
Latif, N.; Mishriky, N.; Assad, F. M. Aust. J. Chem. 1982, 35,
1037–1043.
Patel, M.; McHugh Jr., R. J.; Cordova, B. C.; Klabe, R. M.;
Erickson- Viitanen, S.; Trainor, G. L.; Ko, S. S. Bioorg. Med.
Chem. Lett. 1999, 9, 3221-3224.
5.
6.
Abood, N. A.; Schretzman, L. A.; Flynn, D. L.; Houseman, K.
A.; Wittwer, A. J.; Dilworth, V. M.; Hippenmeyer, P. J.;
Holwerda, B. C. Bioorg. Med. Chem. Lett. 1997, 7, 2105-2108.
Dordal, A.; Lipkin, M.; Macritchie, J.; Mas, J.; Port, A.; Rose,
S.; Salgado, L.; Savic, V.; Schmidt, W.; Serafini, M. T.;
Spearing, W.; Torrens, A.; Yeste, S. Bioorg. Med. Chem. Lett.
2005, 15, 3679-3684.
32. Crystal data of product 7g: C32H22N2O4S2,
Formula weight=562.
64, Wavelength=0.71073 Å, Orthorhombic, P bca, a =7.8313
(6) Å, b =13.8840 (11) Å, c =24.667 (2) Å, α = 90°, β = 90°, =
90°, V=2682.1 (4) Å3, Z=4, DCalcd=1.393 Mg/m3, CCDC No.
1500314.
7.
(a) Singh, M. S.; Chowdhury, S. RSC Adv. 2012, 2, 4547-4592;
(b) Biggs- Houck, J. E.; Younai, A.; Shaw, J. T. Curr. Opin.
Chem. Biol. 2010, 14, 371-382; (c) Ahmed N.; Lie, J. E. V.
Tetrahedron Lett. 2007, 48, 5407– 5409; (d) Domling, A.; Ugi,
I. Angew. Chem. Int. Ed. 2000, 39, 3168–3210; (e) Heck, S.;
Domling, A. Synlett 2000, 424-426; (f) Terret, N. K.;
Gardener, M.; Gordon, D. W.; Kobylecki, R. J.; Steele, J.
Tetrahedron 1995, 51, 8135–8173.
33. General procedure for the synthesis of 1-amidoalkyl-2-
naphthols and 1,2-dihydro-1-arylnaphth[1,2-e][1,3] oxazin-
3-ones: A mixture of 2-naphthol (1mmol), aldehyde (1mmol),
amide/urea (1.2 mmol) and graphene oxide (35 wt %) was
grounded in a pestle-mortar and was transferred to 25 ml round-
bottom flask, which was heated in oil-bath maintained at 120 oC
till the completion of reaction (TLC). After cooling the
reaction, ethanol (20 ml) was added and resultant mixture was
sonicated for 10 min. The catalyst was filtered and the filtrate
upon concentration to 5 ml resulted in precipitation of the
product. The product was isolated by filtration.
8.
9.
Das, B.; Laxminarayana, K.; Ravikanth, B.; Rao, B. R. J. Mol.
Catal. A: Chem. 2007, 261, 180-183.
Shaterian, H. R.; Yarahmadi, H. Tetrahedron Lett. 2008, 49,
1297–1300.
10. Kumar, A.; Gupta, M. K.; Kumar, M. RSC Advances 2012, 2,
7371-7376.
11. Dabiri, M.; Delbiri, A. S.; Bazgir, A. Synlett 2007, 821-823.
12. Moghanian, H.; Mobinikhaledi, A.; Blackman, A. G.; Sarough-
Farahani, E. RSC Adv. 2014, 4, 28176-28185.
13. Kantevari, S.; Vuppalapati, S. V. N.; Nagarapu, L. Catal.
Commun. 2007, 8, 1857–1862.