ChemComm
Communication
(d) C. W. Yoon and L. G. Sneddon, J. Am. Chem. Soc., 2006,
128, 13992; (e) F. Cheng, H. Ma, Y. Li and J. Chen, Inorg. Chem.,
2007, 46, 788; ( f ) M. T. Nguyen, V. S. Nguyen, M. H. Matus,
G. Gopakumar and D. A. Dixon, J. Phys. Chem. A, 2007, 111, 679;
(g) P. V. Ramachandran and P. D. Gagare, Inorg. Chem., 2007,
46, 7810.
6 (a) T. J. Clark, C. A. Russell and I. Manners, J. Am. Chem. Soc., 2006,
128, 9582; (b) M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey
and K. L. Goldberg, J. Am. Chem. Soc., 2006, 128, 12048;
(c) R. J. Keaton, J. M. Blacquiere and R. T. Baker, J. Am. Chem.
Soc., 2007, 129, 1844; (d) T. J. Clark, G. R. Whittell and I. Manners,
Inorg. Chem., 2007, 46, 7522; (e) P. M. Zimmerman, A. Paul, Z. Zhang
and C. B. Musgrave, Angew. Chem., Int. Ed., 2009, 48, 2201;
( f ) G. Alcaraz, L. Vendier and S. Sabo-Etienne, Angew. Chem.,
Int. Ed., 2010, 49, 918.
A highly efficient [Pd(NHC)(PR3)] catalytic system for the
tandem dehydrogenation of AB coupled with the hydrogenation
of alkenes and alkynes has been developed which proves
effective for a wide array of alkenes. The optimised protocol
makes use of alcohol solvents and very low catalyst loadings
(0.05–0.25 mol%). The efficient hydrogenation of alkene/alkyne
substrates using solid NH3BH3 in place of H2 presents
an improvement in terms of safety and logistics with the
removal of the risks inherent to the transport and manipulation
of an explosive compressed gas. Further studies aimed at
testing the generality of this tandem reaction and demon-
strating the usefulness of AB as a convenient H2 delivery agent
in chemical transformations are presently ongoing in our
laboratories.
We thank the EPSRC and the Royal Society (University
Research Fellowship to CSJC), the German Federal Excellence
Initiative (FYS grant to C.H.), the Karlsruhe House of Young
Scientists (KHYS) from the Karlsruhe Institute of Technology
(grant to C.H.) and the Deutscher Akademischer Austauschdienst
(German Academic Exchange Service, grant to C.H.) for support.
7 (a) US DOE ‘‘Basic Research Needs for the Hydrogen Economy’’
(http://www.sc.doe.gov/bes/reports/files/NHE_rpt.pdf);
(b) D. A. Dixon and M. Gutowski, J. Phys. Chem. A, 2005, 109, 5129.
8 (a) J. S. Wang and R. A. Geanangel, Inorg. Chim. Acta, 1988, 148, 185;
(b) M. E. Blumh, M. G. Bradley, R. Butterick, U. Kusari and
L. G. Sneddon, J. Am. Chem. Soc., 2006, 128, 7748; (c) G. Wolf,
J. Baumann, F. Baitalow and F. P. Hoffmann, Thermochim. Acta,
2000, 343, 19; (d) F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke-
Rossler and G. Leitner, Thermochim. Acta, 2002, 391, 159; (e) C. A.
Jaska, K. Temple, A. J. Lough and I. Manners, J. Am. Chem. Soc.,
2003, 125, 9424; ( f ) F. H. Stephens, R. T. Baker, M. H. Matus,
D. J. Grant and D. A. Dixon, Angew. Chem., Int. Ed., 2007, 46, 746.
´
9 (a) M. Couturier, J. L. Tucker, B. M. Andresen, P. Dube and J. T.
Negri, Org. Lett., 2001, 3, 465; (b) M. Couturier, B. M. Andresen,
Notes and references
´
J. L. Tucker, P. Dube, S. J. Brenek and J. T. Negri, Tetrahedron Lett.,
1 J. G. de Vries and C. J. Elsevier, Handbook of Homogeneous
Hydrogenation, Wiley-VCH, Weinheim, 2007.
2 For recent reviews on hydrogen storage materials for automotive
2001, 42, 2763; (c) M. Couturier, B. M. Andresen, J. L. Tucker,
´
P. Dube, S. Breneck and J. T. Negri, Tetrahedron Lett., 2001, 42,
2285.
applications, see: (a) J. Yang, A. Sudik, C. Wolverton and D. J. Siegel, 10 N. Blaquiere, S. Diallo-Garcia, S. I. Gorelsky, D. A. Black and
Chem. Soc. Rev., 2010, 39, 656; (b) C. W. Hamilton, R. T. Baker, K. Fagnou, J. Am. Chem. Soc., 2008, 130, 14034.
ˇ´
A. Staubitz and I. Manners, Chem. Soc. Rev., 2009, 38, 279; 11 S. Fantasia, J. D. Egbert, V. Jurcık, C. S. J. Cazin, H. Jacobsen,
´
(c) A. W. C. van der Berg and C. O. Arean, Chem. Commun., 2008,
L. Cavallo, D. M. Heinekey and S. P. Nolan, Angew. Chem., Int. Ed.,
2009, 48, 5182.
668; (d) T. B. Marder, Angew. Chem., Int. Ed., 2007, 46, 8116.
ˇ´
a recent discussion on this topic see: T. W. Graham, 12 V. Jurcık, S. P. Nolan and C. S. J. Cazin, Chem.–Eur. J., 2009, 15,
3 For
C.-W. Tsang, X. Chen, R. Guo, W. Jia, S.-M. Lu, C. Sui-Seng, 2509.
C. B. Ewart, A. Lough, D. Amoroso and K. Abdur-Rashid, Angew. 13 For a recent review on NHC-based catalysts in hydrogenation and
Chem., Int. Ed., 2010, 49, 8708.
transfer hydrogenation, see N-Heterocyclic Carbene Complexes in
Additions to Multiple bonds, A. A. Danopoulos, in N-Heterocyclic
Carbenes in Transition Metal Catalysis and Organocatalysis,
ed. C. S. J. Cazin, Springer, London, 2011, vol. 32, p. 24.
4 (a) R. Coontz and B. Hanson, Science, 2004, 305, 957; (b) G. W.
Crabtree and M. S. Dresselhaus, MRS Bull., 2008, 33, 421;
(c) I. P. Jain, P. Jain and A. Jain, J. Alloys Compd., 2010, 503, 303.
5 (a) M. Chandra and Q. J. Xu, J. Power Sources, 2006, 156, 190; 14 For details on the dehydrogenation of NH3BH3 using 1, see ESI,†
(b) M. Chandra and Q. J. Xu, J. Power Sources, 2006, 159, 855; section 2.
(c) Q. J. Xu and M. Chandra, J. Power Sources, 2006, 163, 364; 15 For the full optimization study, see ESI†.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 1005--1007 1007