however, often the responsible complex is not clear. Nev-
ertheless, these discoveries have opened the door to the
development of several novel ruthenium-catalyzed tandem
processes, in which the metal promotes two or more
mechanistically distinct transformations in the same reaction
vessel.6
acetate (EDA) and Ph3P in the presence of substoichiometric
amounts of RuCl2(PPh3)3 couple to give a phosphonium ylide
capable of aldehyde olefination.12a In the absence of catalyst,
the ethyl diazoacetate reacted with the aldehyde (1) to give
azine 2 (eq 1).13 Since then, several alternative ruthenium
Given the costs associated with reagents, solvents, and
waste for each unique transformation, as well as the time
required for material handling and purification, significant
economic advantages are possible for running multiple
transformations in a single reaction vessel. Accordingly, we
have developed several tandem processes where olefin
metathesis is used in conjunction with olefin isomerizations,7
Kharasch additions,8 cyclopropanations,9 or olefin oxida-
tions.10 Herein, we demonstrate the use of ruthenium catalysts
I-IV in a tandem olefin metathesis/Wittig olefination
sequence.
Over the past decade, metal-catalyzed or “salt-free” Wittig
olefinations have gained interest as an alternative to classic
base-mediated Wittig olefinations.11 To the best of our
knowledge, the first example of a ruthenium-catalyzed
version of this transformation was published in 1998 by
Fujimura and Honma, who demonstrated that ethyl diazo-
catalysts have been developed to carry out this transforma-
tion.14 Although the olefin metathesis catalysts I-IV have
not been used in Wittig olefinations, recent work indi-
cates that a phosphonium ylide is likely generated during
catalyst decomposition.5a In light of these findings, we
anticipated that a metal-catalyzed olefination could be car-
ried out using one of these popular ruthenium metathesis
catalysts.
Preliminary studies on the olefination of benzaldehyde
using ruthenium complexes I-IV were encouraging. Al-
though the reaction did not go to completion using conditions
developed for RuCl2(PPh3)3,12 the desired ethyl cinnamate
3 was observed. In addition, considerable amounts of diethyl
maleate and fumarate were also formed in this reaction. This
was not surprising given a report by Hodgson and Angrish
on the ability of complex II to dimerize EDA.4b To
circumvent this undesired side reaction, slow addition of the
diazoester to the reaction mixture was explored. Gratifyingly,
under these conditions, the desired olefinated product 3 is
obtained with high yield and selectivity (eq 2).
Given the prevalence and synthetic utility of R,â,γ,δ-
unsaturated carbonyl-containing compounds,15 we decided
to explore their preparation through a ruthenium-catalyzed
cross-metathesis (CM) of terminal olefins with acrolein and
methacrolein, followed by a ruthenium-catalyzed Wittig
olefination of the resulting aldehyde with diazoacetates.
Direct CM to generate these electron-deficient dienes is
possible;16 however, the selectivity of the transformation can
be compromised in the absence of steric and/or electronic
bias. For example, Grubbs and co-workers reported access
to such structures from terminal olefins by carrying out a
(4) For example, see: (a) Alcaide, B.; Almendros, P. Chem.-Eur. J.
2003, 9, 1258. (b) Hodgson, D. M.; Angrish, D. Chem. Commun. 2005,
39, 4902. (c) Tallarico, J. A.; Malnick, L. M.; Snapper, M. L. J. Org. Chem.
1999, 64, 344. (d) Schmidt, B. Eur. J. Org. Chem. 2003, 816. (e) Schmidt,
B. Chem. Commun. 2004, 742. (f) Schmidt, B. J. Org. Chem. 2004, 69,
7672. (g) Drouin, S.; Zamanian, F.; Fogg, D. Organometallics 2001, 20,
5495. (h) Schmidt, B.; Pohler, M. Org. Biomol. Chem. 2003, 1, 2512. (i)
Simal, F.; Demonceau, A.; Noels, A. F. Tetrahedron Lett. 1999, 40, 5689.
(j) Bielawski, C. W.; Louie, J.; Grubbs, R. H. J. Am. Chem. Soc. 2000,
122, 12872. (k) Quayle, P.; Fengas, D.; Richards, S. Synlett 2003, 1797. (l)
Schmidt, B.; Pohler, M.; Costisella, B. J. Org. Chem. 2004, 69, 1421. (m)
Lee, B. T.; Schrader, T. O.; Mart´ın-Matute, B.; Kauffman, C. R.; Zhang,
P.; Snapper, M. L. Tetrahedron 2004, 60, 7391.
(5) (a) Hong, S. H.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2004,
126, 7414. (b) Galan, B. R.; Gembicky, M.; Dominiak, P. M.; Keister, J.
B.; Diver, S. T. J. Am. Chem. Soc. 2005, 127, 15702. (c) van Rensburg,
W. J.; Steynberg, P. J.; Meyer, W. H.; Kirk, M. M.; Forman, G. S. J. Am.
Chem. Soc. 2004, 126, 14332. (d) Dinger, M. B.; Mol, J. C. Eur. J. Inorg.
Chem. 2003, 2827. (e) Amoroso, D.; Yap, G. P. A.; Fogg, D. E.
Organometallics 2002, 21, 3335.
(6) For examples of tandem reaction sequences with ruthenium metathesis
catalysts developed outside of our laboratory, see: (a) Schmidt, B.; Pohler,
M. J. Organomet. Chem. 2005, 690, 5552. (b) Whelan, A. N.; Elaridi, J.;
Harte, M.; Smith, S. V.; Jackson, W. R.; Robinson, A. J. Tetrahedron Lett.
2004, 45, 5252. (c) Beligny, S.; Eibauer, S.; Maechling, S.; Blechert, S.
Angew. Chem., Int. Ed. 2006, 45, 1900. (d) Schmidt, B.; Pohler, M. Org.
Biomol. Chem. 2003, 1, 2512. (e) Johnson, L. K.; Mecking, S.; Brookhart,
M. Polym. Mater. Sci. Eng. 1997, 76, 246. (f) Louie, J.; Bielawski, C.
W.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 11312. For a recent
review, see: (g) Dragutan, V.; Dragutan, I. J. Organomet. Chem. 2006,
691, 5129. Also, see: (h) Burling, S.; Paine, B. M.; Nama, D.; Brown, V.
S.; Mahon, M. F.; Prior, T. J.; Pregosin, P. S.; Whittlesey, M. K.; Williams,
J. M. J. J. Am. Chem. Soc. 2007, 129, 1987. (i) Otterlo, W. A. L.; Coyanis,
E. M.; Panayides, J.-L.; de Koning, C. B.; Fernandes, M. A. Synlett
2005, 501.
(12) Fujimura, O.; Honma, T. Tetrahedron Lett. 1998, 39, 625.
(13) Lu, X.; Fang, H.; Ni, Z. J. Organomet. Chem. 1989, 373, 77.
(14) (a) Chen, Y.; Huang, L.; Ranade, M. A.; Zhang, X. P. J. Org. Chem.
2003, 68, 3714. (b) Sun, W.; Yu, B.; Ku¨hn, F. E. Tetrahedron Lett. 2006,
47, 1993. (c) Pedro, F. M.; Santos, A. M.; Baratta, W.; Kuehn, F. E.
Organometallics 2007, 26, 302. (d) Lebel, H.; Paquet, V. Organometallics
2004, 23, 1187. (e) Ku¨hn, F. E.; Santos, A. M.; Jogalekar, A. A.; Pedro, F.
M.; Rigo, P.; Baratta, W. J. Catal. 2004, 227, 253.
(7) (a) Sutton, A. E.; Seigal, B. A.; Finnegan, D. F.; Snapper, M. L. J.
Am. Chem. Soc. 2002, 124, 13390. (b) Finnegan, D.; Seigal, B. A.; Snapper,
M. L. Org. Lett. 2006, 8, 2603.
(8) Seigal, B. A.; Fajardo, C.; Snapper, M. L. J. Am. Chem. Soc. 2005,
127, 16329.
(9) Kim, B. G.; Snapper, M. L. J. Am. Chem. Soc. 2006, 128, 52.
(10) Scholte, A. S.; An, M. H.; Snapper, M. L. Org. Lett. 2006, 8, 4759.
(11) (a) Cheng, G. M.; Gholam, A.; Woo, L. K. Organometallics 2003,
22, 1468. (b) Lu, X.; Fang, H.; Ni, Z. J. Organomet. Chem. 1989, 373, 77.
(c) Liao, Y.; Huang, Y. Tetrahedron Lett. 1990, 31, 5897. (d) Lebel, H.;
Paquet, V.; Proulx, C. Angew. Chem., Int. Ed. 2001, 40, 2887. (e) Grasa,
G. A.; Moore, Z.; Martin, K. L.; Stevens, E. D.; Nolan, S. P.; Paquet, V.;
Lebel, H. J. Organomet. Chem. 2002, 658, 126. (f) Ledford, B. E.; Carreira,
E. M. Tetrahedron Lett. 1997, 38, 8125.
(15) (a) Kobayashi, M.; Tanaka, J.; Katori, T.; Kitagawa, I. Chem. Pharm.
Bull. 1990, 38, 2960. (b) Abe, N.; Murata, T.; Hirota, A. Biosci. Biotechnol.
Biochem. 1998, 62, 661. (c) The Retinoids; Sporn, M. B., Roberts, A. B.,
Goodman, D. S., Eds.; Academic Press: NY, 1984; Vols. 1-2. (d)
Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186. (e) De la
Herran, G.; Murcia, C.; Csakye, A. G. Org. Lett. 2005, 7, 5629. (f)
Vanderwal, C. D.; Vosburg, D. A.; Weiler, S.; Sorensen, E. J. J. Am. Chem.
Soc. 2003, 125, 5393. (g) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am.
Chem. Soc. 2001, 123, 12466 and references cited therein.
1750
Org. Lett., Vol. 9, No. 9, 2007