FULL PAPER
Succinic Acid: 1H NMR (400 Hz, [D6]DMSO): δ = 2.40 (s, 4 H),
11.6–13.4 (br, 2 H) ppm. 13C NMR (100 Hz): δ = 173.7, 28.8 ppm.
Cao, Y. Song, T.-W. Wang, P. E. Fanwick, R. J. Crutchley, T.
Ren, Inorg. Chem. 2010, 49, 11525–11531; e) J. S. Pap, J. L.
Snyder, P. M. B. Piccoli, J. F. Berry, Inorg. Chem. 2009, 48,
9846–9852; f) K. M. Kadish, R. Garcia, T. Phan, J. Wellhoff,
E. Van Caemelbecke, J. L. Bear, Inorg. Chem. 2008, 47, 11423–
11428; g) H. Miyasaka, T. Izawa, K. Sugiura, M. Yamashita,
Inorg. Chem. 2003, 42, 7683–7690; h) R. Lee, Y. Yang, G. K.
Tan, C.-H. Tan, K.-W. Huang, Dalton Trans. 2010, 39, 723–
725; i) S. Ngubane, K. M. Kadish, J. L. Bear, E. Van Caemel-
becke, A. Thuriere, K. P. Ramirez, Dalton Trans. 2013, 42,
3571–3580; j) R. Gracia, H. Adams, N. J. Patmore, Dalton
Trans. 2009, 259–261; k) L.-Y. Zhang, J.-L. Chen, L.-X. Shi,
Z.-N. Chen, Organometallics 2002, 21, 5919–5925; l) M. A. S.
Aquino, Coord. Chem. Rev. 2004, 248, 1025–1045.
a) G. M. Chiarella, F. A. Cotton, C. A. Murillo, M. D. Young,
Q. Zhao, Inorg. Chem. 2010, 49, 3051–3056; b) D. A. Boyd,
R. J. Crutchley, P. E. Fanwick, T. Ren, Inorg. Chem. 2010, 49,
1322–1324; c) L. Zhang, B. Xi, I. Po-Chun Liu, M. M. R.
Choudhuri, R. J. Crutchley, J. B. Updegraff, J. D. Protasiewicz,
T. Ren, Inorg. Chem. 2009, 48, 5187–5194; d) W.-Z. Chen, T.
Ren, Organometallics 2005, 24, 2660–2669; e) W.-Z. Chen, T.
Ren, Organometallics 2004, 23, 3766–3768; f) J. Savchenko,
P. E. Fanwick, H. Hope, Y. Gao, C. K. Yerneni, T. Ren, Inorg.
Chim. Acta 2013, 396, 144–148.
cis-Cyclopentane-1,3-dicarboxylic Acid: 1H NMR (400 Hz, [D6]-
DMSO): δ = 1.72–1.88 (m, 5 H), 2.06–2.11 (m, 1 H), 3.39 (br, 2
H), 12.08 (br, 2 H, CO2H) ppm. 13C NMR (100 Hz): δ = 176.4,
43.4, 33.0, 29.2 ppm.
1
Benzoic Acid: H NMR (400 Hz, [D6]DMSO): δ = 7.50 (dd, J = 8,
4 Hz, 2 H, Ar-H), 7.62 (t, J = 8 Hz, 1 H, Ar-H), 7.94 (d, J = 4 Hz,
2 H, Ar-H), 12.94 (br, 1 H, CO2H) ppm. 13C NMR (100 Hz): δ =
167.3, 132.9, 130.8, 129.3, 128.6 ppm.
1
4-Chlorobenzoic Acid: H NMR (400 Hz, [D6]DMSO): δ = 7.54 (d,
J = 8.4 Hz, 2 H), 7.92 (d, J = 8.4 Hz, 2 H), 13.0 (br, 1 H, CO2H)
ppm. 13C NMR (100 Hz): δ = 166.2, 137.6, 131.0, 129.4, 128.6
ppm.
[3]
1
4-Bromorobenzoic Acid: H NMR (400 Hz, [D6]acetone): δ = 7.95
(d, J = 8.8 Hz, 2 H), 7.69 (d, J = 8.8 Hz, 2 H) ppm. 13C NMR
(100 Hz): δ = 166.6, 132.5, 132.1, 130.5, 128.0 ppm.
1
4-Picolinic Acid: H NMR (400 Hz, D2O): δ = 8.59 (d, J = 4.2 Hz,
2 H), 7.72 (d, J = 4.2 Hz, 2 H) ppm. 13C NMR (100 Hz): δ = 173.2,
149.1, 145.2, 123.1 ppm.
[4]
[5]
a) P. Delgado-Martínez, R. González-Prieto, C. J. Gómez-
García, R. Jiménez-Aparicio, J. L. Priego, M. R. Torres, Dalton
Trans. 2014, 43, 3227–3237; b) P. Delgado, R. González-Prieto,
R. Jiménez-Aparicio, J. Perles, J. L. Priego, R. M. Torres, Dal-
ton Trans. 2012, 41, 11866–11874; c) B. R. Groves, D. I. Arbuc-
kle, E. Essoun, T. L. Lundrigan, R. Wang, M. A. S. Aquino,
Inorg. Chem. 2013, 52, 11563–11572; d) M. W. Cooke, T. S.
Cameron, K. N. Robertson, J. C. Swarts, M. A. S. Aquino, Or-
ganometallics 2002, 21, 5962–5971.
a) R. L. S. R. Santos, R. van Eldik, D. de Oliveira Silva, Inorg.
Chem. 2012, 51, 6615–6625; b) L. Messori, T. Marzo, R. N. F.
Sanches, Hanif-Ur-Rehman, D. de Oliveira Silva, A. Merlino,
Angew. Chem. Int. Ed. 2014, 53, 6172–6175; Angew. Chem.
2014, 126, 6286–6289; c) R. W.-Y. Sun, M. F.-Y. Ng, E. L.-M.
Wong, J. Zhang, S. S.-Y. Chui, L. Shek, T.-C. Lau, C.-M. Che,
Dalton Trans. 2009, 10712–10716.
a) R. Kuwahara, S. Fujikawa, K. Kuroiwa, N. Kimizuka, J.
Am. Chem. Soc. 2012, 134, 1192–1199; b) T. E. Vos, Y. Liao,
W. W. Shum, J.-H. Her, P. W. Stephens, W. M. Reiff, J. S. Miller,
J. Am. Chem. Soc. 2004, 126, 11630–11639.
a) M. E. Harvey, D. G. Musaev, J. Du Bois, J. Am. Chem. Soc.
2011, 133, 17207–17216; b) L. Villalobos, J. E. Barker Paredes,
Z. Cao, T. Ren, Inorg. Chem. 2013, 52, 12545–12552; c) J. E.
Barker, T. Ren, Inorg. Chem. 2008, 47, 2264–2266; d) L. Villa-
lobos, Z. Cao, P. E. Fanwick, T. Ren, Dalton Trans. 2012, 41,
644–650.
a) J. K. Bera, N. Sadhukhan, M. Majumdar, Eur. J. Inorg.
Chem. 2009, 4023–4038; b) J. P. Collin, A. Jouaiti, J. P. Sauvage,
W. C. Kaska, M. A. McLoughlin, N. L. Keder, W. T. A. Har-
rison, G. D. Stucky, Inorg. Chem. 1990, 29, 2238–2241; c) A.
Petitjean, F. Puntoriero, S. Campagna, A. Juris, J.-M. Lehn,
Eur. J. Inorg. Chem. 2006, 3878–3892; d) E. Binamira-Soriaga,
N. L. Keder, W. C. Kaska, Inorg. Chem. 1990, 29, 3167–3171.
a) M. H. Chisholm, G. Christou, K. Folting, J. C. Huffman,
C. A. James, J. A. Samuels, J. L. Wesemann, W. H. Woodruff,
Inorg. Chem. 1996, 35, 3643–3658; b) F. A. Cotton, V. M. Mis-
kowski, B. Zhong, J. Am. Chem. Soc. 1989, 111, 6177–6182; c)
F. A. Cotton, Y. Kim, T. Ren, Polyhedron 1993, 12, 607–611;
d) J. Telser, R. S. Drago, Inorg. Chem. 1984, 23, 3114–3120.
C. Vu, D. Walker, J. Wells, S. Fox, J. Heterocycl. Chem. 2002,
39, 829–832.
1
2-Phenylacetic Acid: H NMR (400 Hz, CDCl3): δ = 7.29–7.36 (m,
5 H, Ar), 3.67 (s, 2 H, CH2) ppm. 13C NMR (100 Hz): δ = 178.2,
133.3, 129.4, 128.7, 127.4, 41.3 ppm.
3-Methylhexanedioic Acid: 1H NMR (400 Hz, CDCl3): δ = 0.98 (d,
J = 6.8 Hz, 3 H, CH3), 1.50–1.58 (m, 1 H), 1.71–1.75 (m, 1 H),
1.98–2.03 (m, 1 H), 2.18–2.23 (m, 1 H), 2.30–2.43 (m, 3 H) ppm.
13C NMR (100 Hz): δ = 180.0, 179.3, 41.4, 31.8, 31.3, 29.8, 19.5
ppm.
Crystallography: Crystals of 3 suitable for X-ray structure determi-
nation were obtained by recrystallization from a solution of water,
THF, and acetone. The cell parameters were determined with a
Siemens SMART CCD diffractometer. Crystal data of 3:
C22H25Ca0.50N2O12Ru2, Mw = 731.62, monoclinic, space group
P21/n; a = 8.2264(2) Å, b = 18.0498(5) Å, c = 17.5389(5) Å, α =
[6]
[7]
90°, β = 92.405(2)°, γ = 90°; V = 2601.97(12) Å3; Z = 4; ρcalcd.
=
1.868 Mgm–3; F(000) = 1460; crystal size: 0.20ϫ0.15ϫ0.10 mm;
reflections collected: 15966; independent reflections: 5795 [R(int) =
0.0311]; θ range 2.92 to 27.50°; goodness-of-fit on F2 0.999; final
R indices [IϾ2σ(I)] R1 = 0.0283, wR2 = 0.0616; R indices (all data)
R1 = 0.0400, wR2 = 0.0665. The structure was solved with the
SHELXS-97 program[16] and refined with the SHELXL-97 pro-
gram[17] by full-matrix least-squares techniques on F2 values.
CCDC-1036945 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.
[8]
[9]
Acknowledgments
The authors thank the National Science Council, Taiwan for finan-
cial support (grant number MOST103-2113-M-002 -002-MY3).
[1] M. J. Bennett, K. G. Caulton, F. A. Cotton, Inorg. Chem. 1969,
8, 1–6.
[10]
[11]
[2] a) P. Angaridis, J. F. Berry, F. A. Cotton, C. A. Murillo, X.
Wang, J. Am. Chem. Soc. 2003, 125, 10327–10334; b) Y. Liao,
W. W. Shum, J. S. Miller, J. Am. Chem. Soc. 2002, 124, 9336–
9337; c) M. Manowong, B. Han, T. R. McAloon, J. Shao, I. A.
Guzei, S. Ngubane, E. Van Caemelbecke, J. L. Bear, K. M.
Kadish, Inorg. Chem. 2014, 53, 7416–7428; d) D. A. Boyd, Z.
a) F. E. Kuehn, R. W. Fischer, W. A. Herrmann, T. Weskamp,
Transition Metals in Organic Synthesis 2nd ed., Wiley-VCH,
Weinheim, Germany, 2004, vol. 2, p. 427–436; b) D. G. Lee, T.
Chen, Cleavage Reactions, in: Comprehensive Organic Synthe-
sis, vol. 7, Oxidation (Eds.: B. M. Trost, I. Fleming), 1st ed.,
Eur. J. Inorg. Chem. 2015, 1417–1423
1422
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim