FULL PAPERS
Immobilized Drosophila melanogaster Deoxyribonucleoside Kinase
2 min for the soluble enzymes, or by using pipette filter de-
vices for the immobilized enzymes) and analyzed by HPLC
(see below for chromatographic conditions and tR). The ac-
tivity of DmdNK was expressed in international units (IU).
One IU corresponds to the amount of enzyme that produces
1 mmol of dAdo-MP (1a) per min.
cleosides, the conversion was determined using the mono-
phosphates as external standards.
Purification of AraA-MP (12a)
Purification of 12a was accomplished by preparative HPLC
using an AKTA Basic100 instrument (Pharmacia, Uppsala,
Sweden); chromatographic conditions were as follows:
column, Phenomenex Jupiter RP-18 (10 mm, 250ꢂ10 mm,
Merck); flow rate, 5 mLminꢀ1; detector, l=260 nm and
Enzyme Stability Assay
The residual activity was determined by modifying the gen-
eral procedure previously reported.[33]
280 nm; mobile phase MeOH/ACHTNUGTRNEUNG(NH4)HCO3, isocratic elution
at 3% MeOH for 2 column volumes, then gradient elution
from 3% to 40% MeOH in 2 column volumes. After lyophi-
lization the product appeared as a white solid.
Synthesis of AraA-MP and FaraA-MP
The suitable amount of nucleoside and ATP was dissolved
in 50 mM ammonium acetate containing 2 mM MgCl2. The
final pH was set to 8.0 with NaOH. DmdNK (soluble or im-
mobilized) was then added and the mixture was kept under
mechanical stirring at 378C. The reaction was stopped by fil-
tering the enzyme. The filtered solution was analyzed by
HPLC (see below for chromatographic conditions and tR).
Acknowledgements
We thank Dr. P. Francescato for his assistance in the prepara-
tive purification of araA-MP (12a) and Prof. G. Speranza
(University of Milano, Italy) for NMR spectra and helpful
discussions.
Chromatographic Conditions
The reaction was monitored by HPLC (l=260 nm), identi-
fying the products by comparing their retention times with
those of authentic samples. The column was a Kromasil References
RP18 (5 mm, 250ꢂ4.6 mm) kept at 358C; flow rate was
1 mLminꢀ1.
[1] P. Reichard, Annu. Rev. Biochem. 1988, 57, 349–374.
Mobile phase: eluent A=2 g (NH4)H2PO4 +0.5 g
(NH4)2HPO4/L+30 mL MeOH; eluent B=90% CH3CN.
Gradient: 0 (100% A)!8 min. (100% A)!22 min. (70%
A–30% B)!23 min. (100% A).
[2] S. Eriksson, B. Munch-Petersen, K. Johansson, H. Eck-
lund, Cell. Mol. Life Sci. 2002, 59, 1327–1346.
[3] C. T. Van Buren, A. D. Kulkarni, F. B. Rudolph, J. Nutr.
1994, 124, 160S–164S.
[4] S. Yamaguchi, K. Ninomiya, Food Rev. Int. 1998, 14,
123–138.
[5] M. Behrens, W. Meyerhof, C. Hellfritsch, T. Hofmann,
Angew. Chem. 2011, 123, 2268–2291; Angew. Chem. Int.
Ed. 2011, 50, 2220–2242.
[6] E. De Clercq, J. Clin. Virol. 2004, 30, 115–133.
[7] C. M. Galmarini, Electron. J. Oncol. 2002, 22–32.
[8] D. B. Longley, D. P. Harkin, P. G. Johnston, Nat. Rev.
Cancer 2003, 3, 330–338.
Retention times (nd=not detected): ATP (adenosine tri-
phosphate) 3.2 min; ADP (adenosine diphosphate) 3.6 min;
dAdo (2’-deoxyadenosine, 1) 16.5 min, dAdo-MP (2’-deoxy-
adenosine monophosphate, 1a) 10 min; dGuo (2’-deoxygua-
nosine, 2) 15 min, dGuo-MP (2’-deoxyguanosine monophos-
phate, 2a) 5.5 min; dIno (2’-deoxyinosine, 3) 14.1 min, dIno-
MP (2’-deoxyinosine monophosphate, 3a) 5.1 min; dCyt (2’-
deoxycytidine, 4) 6.9 min, dCyt-MP (2’-deoxycytidine mono-
phosphate, 4a) 2.9 min; dUrd (2’-deoxyuridine, 5) 9.4 min,
dUrd-MP (2’-deoxyuridine monophosphate, 5a) 5.1 min;
Thd (thymidine, 6) 15.4 min, Thd-MP (thymidine monophos-
phate, 6a) 5.6 min; Ado (adenosine, 7) 17.73 min, Ado-MP
(adenosine monophosphate, 7a) 5.3 min; Guo (guanosine, 8)
12.2 min, Guo-MP (guanosine monophosphate, 8a) nd; Ino
(inosine, 9) 12.7 min, Ino-MP (inosine monophosphate, 9a)
nd; Cyt (cytidine, 10) 4.9 min, Cyt-MP (cytidine monophos-
phate, 10a) 2.5 min; Urd (uridine, 11) 6.7 min, Urd-MP (uri-
dine monophosphate, 11a) 2.7 min; araA (arabinosylade-
nine, 12) 15.5 min, araA-MP (arabinosyladenine monophos-
phate, 12a) 5.6 min; FaraA (2-fluoro-arabinosyladenine, 13)
21.31 min, FaraA-MP (2-fluoroarabinosyladenine mono-
phosphate, 13a) 9.09 min; araU (arabinosyluracil, 14)
8.6 min, araU-MP (arabinosyluracil monophosphate, 14a)
2.8 min.
[9] F. Superti, M. G. Ammendolia, M. Marchetti, Curr.
Med. Chem. 2008, 15, 900–911.
[10] R. J. Whitley, B. C. Tucker, A. W. Kinkel, N. H. Barton,
R. F. Pass, J. D. Whelchel, C. G. Cobbs, A. G. Diethelm,
R. A. Buchanan, Antimicrob. Agents Chemother. 1980,
18, 709–715.
[11] W. Plunkett, P. Huang, V. Gandhi, Semin. Oncol. 1990,
17, 3–17.
[12] B. Munch-Petersen, J. Piskur, L. Sondergaard, J. Biol.
Chem. 1998, 273, 3926–3931.
[13] H. Ihlenfeldt, B. Munch-Petersen, J. Piskur, L. Sonder-
gaard, (Roche Diagnostics GmbH), EP Patent
EP0999275A2, 2000.
[14] T. Ikemoto, A. Haze, H. Hatano, Y. Kitamoto, M.
Ishida, K. Nara, Chem. Farm. Bull. 1995, 43, 210–215.
[15] G. Cotticelli, B. Verzola, (Adorkem Technology SPA),
WO Patent WO2005040183, 2005.
[16] P. Blumbergs, M. S. Khan, R. L. Kalamas, A. Patel,
M. P. Lamontagne, WO Patent WO9200312, 1992.
[17] R. A. Sheldon, Green Chem. 2007, 9, 1273–1283.
[18] R. A. Sheldon, Chem. Commun. 2008, 3352–3365.
The percentage of conversion was calculated on the basis
of the depletion of nucleoside compound and monitoring
the formation of the nucleotide product: conversion (%)=
[product area/(product area+nucleoside area)]ꢂ100.
In the case of araA-MP (12a) and FaraA-MP (13a) syn-
thesis scale-up, due to the low solubility of the starting nu-
Adv. Synth. Catal. 2014, 356, 563 – 570
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
569