N. Anand et al. / Applied Catalysis A: General 454 (2013) 119–126
125
Acknowledgements
Narani Anand and Pochamoni Ramudu are thankful to Council
of scientific and Industrial Research (CSIR) New Delhi, for awarding
research fellowships.
References
[1] M. Haruta, Catal. Today 36 (1997) 153–166.
[2] G.C. Bond, Catal. Today 72 (2002) 5–9.
[3] G.J. Hutchings, Gold Bull. 29 (1996) 123–130.
[4] D.T. Thompson, Gold Bull. 31 (1998) 111–118.
[5] J.J. Storhoff, C.A. Mirkin, Chem. Rev. 99 (1999) 1849–1862.
[6] C.M. Niemeyer, Angew. Chem. Int. Ed. 40 (2001) 4128–4158.
[7] M.M. Stevens, N.T. Flynn, C. Wang, D.A. Tirell, R. Langer, Adv. Mater. 16 (2004)
915–918.
[8] M. Li, S. Mann, J. Mater. Chem. 14 (2004) 2260–2263.
[9] M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, Chem. Commun.
(1994) 801–802.
[10] M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, C. Kiely, Chem. Commun. (1995)
1655–1656.
[11] S. Chen, R.W. Murray, Langmuir 15 (1999) 682–689.
[12] K. Aslan, V.H.P. Luna, Langmuir 18 (2002) 6059–6065.
[13] J.M. Abad, S.F.L. Mertens, M. Pita, V.M. Fernandez, D.J. Schiffrin, J. Am. Chem.
Soc. 127 (2005) 5689–5694.
Fig. 9. The reusability of SBA-LAG catalyst.
[14] S. Roux, B. Garcia, J.L. Bridot, M. Salome, C. Marquette, L. Lemelle,
P. Gillet, L. Blum, P. Perriat, O. Tillement, Langmuir 21 (2005)
2526–2536.
[15] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky,
Science 279 (1998) 548–552.
[16] X. Wang, K.S.K. Lin, C.C. Jerry, J.C.C. Chan, S. Cheng, Chem. Commun. 23 (2004)
2762–2763.
[17] D. Margolese, J.A. Melero, S.C. Christiansen, B.F. Chmelka, G.D. Stucky, Chem.
Mater. 12 (2000) 2448–2459.
[18] M. Miura, M. Enna, K. Okuro, M. Nomura, J. Org. Chem. 60 (1995)
4999–5004.
[19] A. Jenmalm, W. Berts, Y.L. Li, K. Luthman, I. Csoregh, U. Hacksell, J. Org. Chem.
59 (1994) 1139–1148.
[20] G. Dyker, Angew. Chem. 111 (1999) 1808–1822.
[21] M.E. Jung, A. Huang, Org. Lett. 2 (2000) 2659–2661.
[22] T. Murai, Y. Mutoh, Y. Ohta, M. Murakami, J. Am. Chem. Soc. 126 (2004)
5968–5969.
[23] T. Zeng, W.-W. Chen, C.M. Cirtiu, A. Moores, G. Song, C.-J. Li, Green Chem. 12
(2010) 570–573.
[24] W.-W. Chen, R. Nguyen, C.-J. Li, Tetrahedron Lett. 50 (2009) 2895–2898.
[25] S.B. Park, H. Alper, Chem. Commun. (2005) 1315–1317.
[26] A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem. 3 (2005) 387–391.
[27] X. Zhang, A. Corma, Chem. Commun. (2007) 3080–3082.
[28] A. Corma, Catal. Rev. 46 (2004) 369–417.
[29] R.A. Widenhoefer, X. Han, Eur. J. Org. Chem. (2006) 4555–4563.
[30] J.H. Teles, S. Brode, M. Chabanas, Angew. Chem. Int. Ed. 37 (1998) 1415–1418.
[31] Y. Fukuda, K. Utimoto, J. Org. Chem. 56 (1991) 3729–3731.
[32] X. Zhang, A. Corma, Dalton Trans. (2008) 397–403.
[33] Y. Fukuda, K. Utimoto, Synthesis (1991) 975–978.
[34] V.K.-Y. Lo, K.-Y. Kung, M.-K. Wong, C.-M. Che, J. Organomet. Chem. 694 (2009)
583–591.
gylamines.
dried at room temperature and reused. The recyclability data was
displayed in Fig. 9, which reveals that the catalytic activity is almost
constant even after 5 repeated cycles.
3.10. Mechanism
[35] B.T. Elie, C. Levine, I.U. Belandio, A.V. Ramirez, R.J. Aguilera, R. Ovalle, M. Contel,
Eur. J. Inorg. Chem. (2009) 3421–3430.
[36] X. Zhang, A. Corma, Angew. Chem. Int. Ed. 47 (2008) 4358–4361.
[37] V.K.-Y. Lo, Y. Liu, M.-K. Wong, C.-M. Che, Org. Lett. 8 (2006) 1529–1532.
Based on the literature reports [38,40] a mechanism is proposed
for three-component one-pot synthesis of propargylamines over
SBA-LAG catalyst (Scheme 3).
[38] M. Kidwai, V. Bansal, A. Kumarb, S. Mozumdarb, Green Chem.
742–745.
[39] K.K.R. Datta, B.V. Subba Reddy, K. Ariga, A. Vinu, Angew. Chem. Int. Ed. 49 (2010)
5961–5965.
[40] K. Layek, R. Chakravarti, M. Lakshmi Kantam, H. Maheswaran, A. Vinu, Green
Chem. 13 (2011) 2878–2887.
[41] B. Karimi, M. Gholinejad, M. Khorasani, Chem. Commun. 48 (2012) 8961–8963.
[42] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, Academic Press,
London, 1982.
9 (2007)
Initially, the immobilized Au nanoparticles on SBA-15 activate
the C H bond of alkynes to form the Au-Alkenyl intermediate,
which is a key step, because Au has high alkynophilicity for termi-
nal alkynes. Then the Au-alkenyl intermediate reacts with iminium
ion which is formed in situ from aldehyde and sec-amine to give
the corresponding propargylamine product and the immobilized
Au nanoparticles on SBA-15 gets regenerated. The same catalytic
cycle repeats till the completion of substrates.
[43] W. Yang, S. Yuhua, X. Anjian, L. Shikuo, W. Xiufang, C. Yan, J. Phys. Chem. C 114
(2010) 4297–4301.
[44] A.S.M. Chong, X.S. Zhao, J. Phys. Chem. B 107 (2003) 12650–12657.
[45] B. Jarrais, C. Pereira, A.R. Silva, A.P. Carvalho, J. Pires, C. Freire, Polyhedron 28
(2009) 994–1000.
4. Conclusions
[46] X. Wang, J.C.C. Chan, Y.-H. Tseng, S. Cheng, Microporous Mesoporous Mater. 95
(2006) 57–65.
[47] N. Anand, K.H.P. Reddy, K.S. Rama Rao, D.R. Burri, Catal. Lett. 141 (2011)
1355–1363.
[48] B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, D. Zhao, Chem. Commun. (2002)
1186–1187.
[49] R.V. Grieken, G. Calleja, G.D. Stucky, J.A. Melero, R.A. Garcia, J. Iglesias, Langmuir
19 (2003) 3966–3973.
In conclusion, the SBA-LAG is a versatile and useful eco-friendly
catalyst. It shows high catalytic performance for the synthesis of
propargylamines in one-pot synthesis under solvent-free condi-
tions in good to excellent yields. It can be easily separated and
reused at least 5 repeated cycles without loss in catalytic activity.
Ease of separation, solvent-free operation and reusability are the
advantages of this catalyst.
[50] T.P.B. Nguyen, J.-W. Lee, W.G. Shim, H. Moon, Microporous Mesoporous Mater.
110 (2008) 560–569.