RSC Advances
Paper
condition. We found that copper content have large effect on the 18 B. Sreedhar, A. S. Kumar and P. S. Reddy, Tetrahedron Lett.,
unit cell parameter and catalytic properties of Cu-MCM-41. Cu- 2010, 51, 1891–1895.
MCM-41 materials with different Si–Cu molar ratio were char- 19 B. M. Choudary, C. Sridhar, M. L. Kantam and B. Sreedhar,
acterized by XRD, FT-IR, SEM, TEM, pyridine absorption and Tetrahedron Lett., 2004, 45, 7319–7321.
potentiometric titration, and according to the characterization 20 B. Karimi, M. Gholinejad and M. Khorasani, Chem.
and optimization experiments, Cu-MCM-41 with Si : Cu molar Commun., 2012, 48, 8961–8963.
ratio of 20 : 1 shows the best catalytic activity. The catalyst has 21 N. Mizuno and M. Misono, Chem. Rev., 1998, 98, 199–218.
been applied, for the rst time, as a heterogeneous and reusable 22 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
catalyst in A3 coupling reaction of aldehydes, amines and phe-
J. S. Beck, Nature, 1992, 359, 710–712.
nylacetylene, a facile method for the synthesis of propargyl- 23 M. Abdollahi-Alibeik and A. Rezaeipoor-Anari, Catal. Sci.
amines under solvent-free condition. Cu-MCM-41 is able to Technol., 2014, 4, 1151–1159.
catalyze this reaction efficiently without using base, inert atmo- 24 M. Abdollahi-Alibeik and M. Pouriayevali, Catal. Commun.,
sphere and solvent as compared to the other methods. 2012, 22, 13–18.
In conclusion, an environmentally benign, economical, prac- 25 B. Chakraborty and B. Viswanathan, Catal. Today, 1999, 49,
tical, and efficient process for the synthesis of propargylamine 253–260.
derivatives was improved through three-component coupling of 26 J. Demel, J. Cejka and P. Stepnicka, J. Mol. Catal. A: Chem.,
ˇ
ˇ
ˇ
ˇ
various aldehydes, amines and phenylacetylene by using copper
2007, 274, 127–132.
modied MCM-41 as a reusable and recoverable catalyst.
27 J. C. Juan, J. Zhang and M. A. Yarmo, J. Mol. Catal. A: Chem.,
2007, 267, 265–271.
28 M. H. Al-Hazmi and A. W. Apblett, Catal. Sci. Technol., 2011,
1, 621–630.
Acknowledgements
We are thankful to the Yazd University Research Council for
partial support of this work.
29 C.-W. Jiang, X. Zhong and Z.-H. Luo, RSC Adv., 2014, 4,
15216–15224.
30 X. Dong, Y. Hui, S. Xie, P. Zhang, G. Zhou and Z. Xie, RSC
Adv., 2013, 3, 3222–3226.
31 F. Farzaneh, E. Zamanifar and C. D. Williams, J. Mol. Catal.
A: Chem., 2004, 218, 203–209.
32 J.-S. Choi, S.-S. Yoon, S.-H. Jang and W.-S. Ahn, Catal. Today,
2006, 111, 280–287.
References
1 F. Xiao, Y. Chen, Y. Liu and J. Wang, Tetrahedron, 2008, 64,
2755–2761.
2 D. Shibata, E. Okada, J. Molette and M. Medebielle,
´
Tetrahedron Lett., 2008, 49, 7161–7164.
3 Y. Yamamoto, H. Hayashi, T. Saigoku and H. Nishiyama, J.
Am. Chem. Soc., 2005, 127, 10804–10805.
4 D. F. Harvey and D. M. Sigano, J. Org. Chem., 1996, 61, 2268–
2272.
33 L. Wang, A. Kong, B. Chen, H. Ding, Y. Shan and M. He, J.
Mol. Catal. A: Chem., 2005, 230, 143–150.
34 S. Vetrivel and A. Pandurangan, J. Mol. Catal. A: Chem., 2005,
227, 269–278.
´
´
35 V. Cortes Corberan, M. J. Jia, J. El-Haskouri, R. X. Valenzuela,
5 B. Yan and Y. Liu, Org. Lett., 2007, 9, 4323–4326.
6 E.-S. Lee, H.-S. Yeom, J.-H. Hwang and S. Shin, Eur. J. Org.
Chem., 2007, 2007, 3503–3507.
7 F. N. Shirota, E. G. DeMaster and H. T. Nagasawa, J. Med.
Chem., 1979, 22, 463–464.
´
´
D. Beltran-Porter and P. Amoros, Catal. Today, 2004, 91–92,
127–130.
´
´
36 A. Szegedi, M. Popova, V. Mavrodinova, M. Urban, I. Kiricsi
and C. Minchev, Microporous Mesoporous Mater., 2007, 99,
149–158.
8 P. H. Yu, B. A. Davis and A. A. Boulton, J. Med. Chem., 1992,
35, 3705–3713.
9 C. Wei and C.-J. Li, J. Am. Chem. Soc., 2002, 124, 5638–5639.
10 C. Fischer and E. M. Carreira, Org. Lett., 2001, 3, 4319–4321.
11 Y. Imada, M. Yuasa, I. Nakamura and S.-I. Murahashi, J. Org.
Chem., 1994, 59, 2282–2284.
12 C. Wei and C.-J. Li, J. Am. Chem. Soc., 2003, 125, 9584–9585.
13 S. Sakaguchi, T. Kubo and Y. Ishii, Angew. Chem., Int. Ed.,
2001, 113, 2602–2604.
37 S. Higashimoto, Y. Hu, R. Tsumura, K. Iino, M. Matsuoka,
H. Yamashita, Y. G. Shul, M. Che and M. Anpo, J. Catal.,
2005, 235, 272–278.
38 V. Ritleng, C. Sirlin and M. Pfeffer, Chem. Rev., 2002, 102,
1731–1770.
39 S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and
M. C. Kozlowski, Chem. Rev., 2013, 113, 6234–6458.
´
´
40 L. R. Pizzio, P. G. Vazquez, C. V. Caceres and M. N. Blanco,
Appl. Catal., A, 2003, 256, 125–139.
14 X. Zhang and A. Corma, Angew. Chem., Int. Ed. Engl., 2008,
47, 4358–4361.
41 M. J. Albaladejo, F. Alonso, Y. Moglie and M. Yus, Eur. J. Org.
Chem., 2012, 2012, 3093–3104.
15 K. Namitharan and K. Pitchumani, Eur. J. Org. Chem., 2010,
2010, 411–415.
42 M. J. Aliaga, D. J. Ramon and M. Yus, Org. Biomol. Chem.,
2010, 8, 43–46.
16 T. Zeng, W.-W. Chen, C. M. Cirtiu, A. Moores, G. Song and
C.-J. Li, Green Chem., 2010, 12, 570–573.
43 M. Lakshmi Kantam, S. Laha, J. Yadav and S. Bhargava,
Tetrahedron Lett., 2008, 49, 3083–3086.
17 Y. Zhang, P. Li, M. Wang and L. Wang, J. Org. Chem., 2009,
74, 4364–4367.
39766 | RSC Adv., 2014, 4, 39759–39766
This journal is © The Royal Society of Chemistry 2014