Table 1 Crystallization of APIs in gels 1 and 2, and in toluene as
solvent
ASP, CAF, IND and CBZ. The crystals obtained inside the
a
organogels can be easily recovered by successive rinsing of the
mixture with toluene, shaking and filtering. This procedure
does not alter the polymorphic outcome of the studied APIs
and avoids the addition of any other chemical species and does
not alter the crystallization outcome of the crystals.
API
Compound 1
Compound 2
Toluene
CBZ
ASP
CAF
IND
III
I
II (b)
III (b)
II + III
I
II (b)
III (b)
III
I
II (b)
III (b)
Financial support from UCM (GR42/10-962027) and the
MINECO of Spain (CTQ2011-22581) is acknowledged. F. A.
is indebted to MEC of Spain for a FPU studentship.
a
Crystallization performed at a concentration of 1 wt% for both
organogelator and API. In brackets, the Greek notation of poly-
morphs II and III of CAF and IND, respectively, is included.
Notes and references
shows the difference found in the polymorphism of CBZ
1
For recent reviews on LMWGs, see: (a) J. van Esch and B. L. Feringa,
Angew. Chem., Int. Ed., 2000, 39, 2263; (b) M. George and R. G. Weiss,
Acc. Chem. Res., 2006, 39, 489; (c) M. Sada, N. Takeuchi, M. Fujita,
M. Numata and S. Shinkai, Chem. Soc. Rev., 2007, 36, 415;
(d) A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem. Soc.
Rev., 2008, 37, 109; (e) J. W. Steed, Chem. Soc. Rev., 2010, 46, 3686;
crystallized inside the organogel prepared from 1 and 2 at
1
wt%. The XRD pattern of the CBZ crystals before and after
washing with toluene remains unaltered (Fig. S7 and Tables
S2–S7, ESIw). The XRD analysis of the CBZ crystals obtained
from the gel of achiral 1 corresponds to polymorph III (Fig. S7
and Tables S2 and S5, ESIw, and Table 1), similarly to the
crystals formed upon crystallization of CBZ in toluene (Fig. S8 and
(f) J. W. Steed, Chem. Commun., 2011, 47, 1379.
2
(a) G. R. Desiraju, Cryst. Growth Des., 2008, 8, 3; (b) G. P. Stahly,
Cryst. Growth Des., 2007, 7, 1007.
3 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294, 1684.
1
5
Table S8, ESIw). However, the X-ray diffractogram of the crystals
obtained inside organogel 2 and also in the organogel formed upon
mixing 1 and 2 in a 9/1 ratio, respectively, shows peaks corres-
ponding to a mixture of polymorphs II and III (Fig. S7 and S9, and
4
5
6
L. A. Estroff, L. Addadi, S. Weiner and A. D. Hamilton, Org.
Biomol. Chem., 2004, 2, 137.
J. A. Foster, M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke,
J. A. K. Howard and J. W. Steed, Nat. Chem., 2010, 2, 1037.
(a) M.-O. M. Piepenbrock, G. O. Lloyd, N. Clarke and
J. W. Steed, Chem. Rev., 2010, 110, 1960; (b) A. R. Hirst,
B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem., Int.
Ed., 2008, 47, 80028; (c) H. Maeda, Chem.–Eur. J., 2008, 36, 11274.
1
5
Tables S3 and S6, ESIw). It is well-known that the crystallization
of CBZ in toluene is unreliable and is often controlled by rates of
cooling and agitation. Therefore, the changes observed in the
polymorphism of CBZ could be ascribed to the retardation of
diffusion, nucleation and convection currents present in the crystal
7 T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning,
R. P. Sijbesma and E. W. Meijer, Chem. Rev., 2009, 109, 5687.
8
9
A. R. A. Palmans, Angew. Chem., Int. Ed., 2007, 46, 8948.
(a) P. Mukhopadhyay, Y. Iwashita, M. Shirakawa, S. Kawano,
N. Fujita and S. Shinkai, Angew. Chem., Int. Ed., 2006, 45, 1592;
1
6
growth media and/or to a heteronucleation phenomenon. The
different polymorphic outcome of CBZ (1 wt%) upon modifying
the concentration of organogelators 1 or 2 in toluene could be
ascribed to heteronucleation (Table S1, and Fig. S10 and S11,
ESIw). In addition, the different morphology of the organogels
formed from achiral 1 and chiral 2, demonstrated by the
corresponding SEM images, could induce changes in the
diffusion, nucleation and convection currents thus conditioning
the polymorphic outcome of CBZ.
(
b) S. Ghosh, X.-Q. Li, V. Stepanenko and F. Wu
Chem.–Eur. J., 2008, 14, 11343.
0 (a) S. Prasanthkumar, A. Saeki, S. Seki and A. Ajayaghosh, J. Am.
Chem. Soc., 2010, 132, 8866; (b) J. Puigmartı-Luis, V. Laukhin,
¨
rthner,
1
´
A. P. del Pino, J. Vidal-Gancedo, C. Rovira, V. N. Laukhin and
D. B. Amabilino, Angew. Chem., Int. Ed., 2007, 46, 238;
(c) T. Nakanishi, T. Michinobu, K. Yoshida, N. Shirahata,
K. Ariga, H. Mohwald and D. G. Kurth, Adv. Mater., 2008, 20, 443.
¨
11 Stereochemistry of Organic Compounds, ed. E. L. Eliel, S. H. Wilen
and L. N. Mander, Wiley-Interscience, Chichester, UK, 1994.
12 (a) P. Jonkheijm, P. van der Schoot, A. P. H. J. Schenning and
E. W. Meijer, Science, 2006, 313, 80; (b) M. M. J. Smulders,
A. P. H. J. Schenning and E. W. Meijer, J. Am. Chem. Soc.,
2008, 130, 606.
We have also tested the crystallization of ASP and
1
7,18
CAF—able to crystallize into two polymorphs
—and
1
9
IND, that can crystallize into four polymorphs, inside the
organogels obtained from 1 and 2 in comparison with toluene.
These APIs did not exhibit any polymorphic difference as
demonstrated by the corresponding X-ray diffraction (XRD)
data (Fig. S12–S14, ESIw). Optical images of the CAF, and
IND crystals obtained inside organogelators 1 and 2, and also
from pure solvent show a dense network of needle-like objects
of bigger size than those observed in the solvent (Fig. S15,
ESIw). In good correlation with the data previously reported
1
3 F. Aparicio, F. Vicente and L. Sa
4
´
nchez, Chem. Commun., 2010,
6, 8356.
1
4 Unfortunately, the chemical structure of the organogelators impedes
to record CD spectra in toluene since the solvent absorbance will
overlap with the dichroic response of the chiral compound.
1
5 (a) A. L. Grzesiak, M. D. Lang, K. Kim and A. J. Matzger,
J. Pharm. Sci., 2003, 92, 2260; (b) M. M. J. Lowes, M. R. Cairo,
a. P. Lotter and J. G. van der Watt, J. Pharm. Sci., 1987, 76, 744;
(c) J. P. Reboul, B. Cristau, J. C. Soyfer and J. P. Astier, Acta
Crystallogr., Sect. B, 1981, 37, 1844; (d) M. D. Lang, J. W. Kampf
and A. J. Matzger, J. Pharm. Sci., 2002, 91, 1186; (e) J.-B. Arlin,
L. S. Price, S. L. Price and A. J. Florence, Chem. Commun., 2011,
5
for bis-urea based organogelators, amides 1 and 2 act as
efficient crystallization media for these APIs, although no
differences in their polymorphism are observed.
47, 7074.
16 Crystal Growth in Gels, ed. H. K. Henisch, Pennsylvania State
University Press, University Park, 1970.
In summary, we report on the cooperative supramolecular
polymerization and amplification of chirality of simple, linear
tetra-amides that self-assemble into helical structures by the
operation of amide CQOꢂ ꢂ ꢂH–N H-bonds. These helical
fibers have been visualized by AFM imaging. The interaction
of single helical, columnar aggregates into bundles allows the
gelation of toluene. The toluene organogels formed from 1 and 2
have been utilized as crystal growth media for common APIs like
1
1
1
7 (a) A. D. Bond, R. Boese and G. R. Desiraju, Angew. Chem., Int.
Ed., 2007, 46, 615; (b) A. D. Bond, R. Boese and G. R. Desiraju,
Angew. Chem., Int. Ed., 2007, 46, 618.
8 (a) D. J. Sutor, Acta Crystallogr., 1958, 11, 453; (b) G. D. Enright,
V. V. Terskikh, D. H. Brouwer and J. A. Ripmeester, Cryst.
Growth Des., 2007, 7, 1406.
9 N. Kaneniwa, M. Otsuka and T. Hayashi, Chem. Pharm. Bull.,
1985, 33, 3447.
This journal is c The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 5757–5759 5759