Journal of the American Chemical Society
Article
(19) Le Bail, A.; Jouanneaux, A. A qualitative account for anisotropic
broadening in whole-powder-diffraction-pattern fitting by second-rank
tensors. J. Appl. Crystallogr. 1997, 30, 265−271.
operated for the DOE Office of Science by Argonne National
Laboratory under contract no. DE-AC02-06CH11357.
(20) Sing, K. The Use of Nitrogen Adsorption for the Character-
ization of Porous Materials. Colloids Surf., A 2001, 187, 3.
(21) Connolly, M. L. Analytical Molecular-Surface Calculation. J.
Appl. Crystallogr. 1983, 16, 548−558.
REFERENCES
■
(1) Antonov, L.; Deneva, V.; Simeonov, S.; Kurteva, V.;
Nedeltcheva, D.; Wirz, J. Exploiting tautomerism for switching and
signaling. Angew. Chem., Int. Ed. 2009, 48, 7875−7878.
(2) Colson, J. W.; Dichtel, W. R. Rationally synthesized two-
dimensional polymers. Nat. Chem. 2013, 5, 453−465.
(3) Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: a
materials platform for structural and functional designs. Nat. Rev.
Mater. 2016, 1, 16068.
(4) Evans, A. M.; Ryder, M. R.; Flanders, N. C.; Vitaku, E.; Chen, L.
X.; Dichtel, W. R. Buckling of Two-Dimensional Covalent Organic
Frameworks under Thermal Stress. Ind. Eng. Chem. Res. 2019, 58,
9883−9887.
(5) Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures,
synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.
(6) Bisbey, R. P.; Dichtel, W. R. Covalent organic frameworks as a
platform for multidimensional polymerization. ACS Cent. Sci. 2017, 3,
533−543.
(7) Ascherl, L.; Evans, E. W.; Hennemann, M.; Di Nuzzo, D.;
Hufnagel, A. G.; Beetz, M.; Friend, R. H.; Clark, T.; Bein, T.; Auras, F.
Solvatochromic covalent organic frameworks. Nat. Commun. 2018, 9,
3802.
(22) Landers, J.; Gor, G. Y.; Neimark, A. V. Density functional
theory methods for characterization of porous materials. Colloids Surf.,
A 2013, 437, 3−32.
(23) Ascherl, L.; Evans, E. W.; Hennemann, M.; Di Nuzzo, D.;
Hufnagel, A. G.; Beetz, M.; Friend, R. H.; Clark, T.; Bein, T.; Auras, F.
Solvatochromic covalent organic frameworks. Nat. Commun. 2018, 9,
3802.
(24) Nekoeinia, M.; Yousefinejad, S.; Abdollahi-Dezaki, A.
Prediction of ETN Polarity Scale of Ionic Liquids Using a QSPR
Approach. Ind. Eng. Chem. Res. 2015, 54, 12682−12689.
́
(25) Filipczak, K.; Karolczak, J.; Ziołek, M. Temperature influence
on deactivation paths and tautomeric equilibrium of some photo-
chromic Schiff bases studied by time-resolved and stationary
spectroscopy. Photochem. Photobiol. Sci. 2009, 8, 1603−1610.
(26) Reichardt, C. Solvatochromic Dyes as Solvent Polarity
Indicators. Chem. Rev. 1994, 94, 2319−2358.
(27) Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.;
Ghosh, S. K. Metal−organic frameworks: functional luminescent and
photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46,
3242−3285.
(8) Chong, J. H.; Sauer, M.; Patrick, B. O.; MacLachlan, M. J. Highly
stable keto-enamine salicylideneanilines. Org. Lett. 2003, 5, 3823−
3826.
(28) The DFT simulations (Figure S18) afford chemical shifts for
the diiminol form of BPH that are generally ca. 5 ppm lower (i.e.,
shifted more upfield) than those observed for the COF (Figure 4A).
In the DFT simulations, the “keto” resonance in the imine/
ketonenamine form of BPH is at ca. 158 ppm (and thus likely at
ca. 163 ppm) and would therefore likely overlap with the observed tail
of the imine resonance. As noted in the text, this resonance is likely
intrinsically weak. (CP-MAS does not efficiently transfer magnet-
ization to quaternary 13C nuclei.) Moreover, incomplete trans-
formation to the imine/ketonenamine tautomer and broadening due
to structural inhomogeneity and perhaps to dynamic processes may
further complicate the observation of this feature.
(29) Wei, Y. S.; Chen, K. J.; Liao, P. Q.; Zhu, B. Y.; Lin, R. B.; Zhou,
H. L.; Wang, B. Y.; Xue, W.; Zhang, J. P.; Chen, X. M. Turning on the
flexibility of isoreticular porous coordination frameworks for
drastically tunable framework breathing and thermal expansion.
Chem. Sci. 2013, 4, 1539−1546.
(9) DeBlase, C. R.; Silberstein, K. E.; Truong, T.-T.; Abruna, H. D.;
̃
Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks
capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013,
135, 16821−16824.
(10) Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine,
T.; Banerjee, R. Construction of crystalline 2D covalent organic
frameworks with remarkable chemical (acid/base) stability via a
combined reversible and irreversible route. J. Am. Chem. Soc. 2012,
134, 19524−19527.
(11) Daugherty, M. C.; Vitaku, E.; Li, R. L.; Evans, A. M.; Chavez, A.
D.; Dichtel, W. R. Improved synthesis of β-ketoenamine-linked
covalent organic frameworks via monomer exchange reactions. Chem.
Commun. 2019, 55, 2680−2683.
(12) Ning, G. H.; Chen, Z. X.; Gao, Q.; Tang, W.; Chen, Z. X.; Liu,
C. B.; Tian, B. B.; Li, X.; Loh, K. P. Salicylideneanilines-Based
Covalent Organic Frameworks as Chemoselective Molecular Sieves. J.
Am. Chem. Soc. 2017, 139, 8897−8904.
(13) Li, X.; Gao, Q.; Aneesh, J.; Xu, H.-S.; Chen, Z.; Tang, W.; Liu,
C.; Shi, X.; Adarsh, K.; Lu, Y. Molecular Engineering of Bandgaps in
Covalent Organic Frameworks. Chem. Mater. 2018, 30, 5743−5749.
(14) Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.;
Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable
hollow spherical covalent organic framework. Nat. Commun. 2015, 6,
6786.
(15) Reference 14 reports that IR spectra and X-ray diffraction
patterns for TAPB-PDA-OH COF are unchanged after exposure to
water, consistent with our observations of this material’s stability.
However, color or UV−vis spectral changes were not discussed.
(16) Li, R. L.; Flanders, N. C.; Evans, A. M.; Ji, W.; Castano, I.;
Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Controlled growth of
imine-linked two-dimensional covalent organic framework nano-
particles. Chem. Sci. 2019, 10, 3796−3801.
(30) Finsy, V.; Kirschhock, C. E.; Vedts, G.; Maes, M.; Alaerts, L.;
De Vos, D. E.; Baron, G. V.; Denayer, J. F. Framework breathing in
the vapour-phase adsorption and separation of xylene isomers with
the metal−organic framework MIL-53. Chem. - Eur. J. 2009, 15,
7724−7731.
(31) Serre, C.; Bourrelly, S.; Vimont, A.; Ramsahye, N. A.; Maurin,
G.; Llewellyn, P. L.; Daturi, M.; Filinchuk, Y.; Leynaud, O.; Barnes, P.
An explanation for the very large breathing effect of a metal−organic
framework during CO2 adsorption. Adv. Mater. 2007, 19, 2246−2251.
(32) Kandambeth, S.; Shinde, D. B.; Panda, M. K.; Lukose, B.;
Heine, T.; Banerjee, R. Enhancement of chemical stability and
crystallinity in porphyrin-containing covalent organic frameworks by
intramolecular hydrogen bonds. Angew. Chem., Int. Ed. 2013, 52,
13052−13056.
(33) Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet
of things: Vision, applications and research challenges. Ad hoc Netw.
2012, 10, 1497−1516.
(17) For the synthesis of thins films of TAPB-PDA-OBu COF, see
Shao, P.; Li, J.; Chen, F.; Ma, L.; Li, Q.; Zhang, M.; Zhou, J.; Yin, A.;
Feng, X.; Wang, B. Flexible Films of Covalent Organic Frameworks
with Ultralow Dielectric Constants under High Humidity. Angew.
Chem. 2018, 130, 16739−16743.
(18) Smith, B. J.; Overholts, A. C.; Hwang, N.; Dichtel, W. R. Insight
into the crystallization of amorphous imine-linked polymer networks
to 2D covalent organic frameworks. Chem. Commun. 2016, 52, 3690−
3693.
I
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX