tꢈꢊꢇꢂꢊ !ꢄ ꢆꢄꢍ ꢇ!ꢃꢅꢂꢍ ꢏꢇ "ꢁꢆꢂ
Journal of Materials Chemistry C
Page 6 of 7
DOI: 10.1039/C8TC02590H
t!t9w
Wꢀꢁꢂꢃꢄꢅ ꢀ aꢄꢆꢇꢂꢈꢄꢅꢉ /ꢊꢇꢋꢈꢉꢆꢂꢌ /
14 H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S.
Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y.
Murata, C. Adachi, Nat. Commun., 2015, 6, 8476.
15 S. D. Xu, T. T. Liu, Y. X. Mu, Y. F. Wang, Z. G. Chi, C. C.
Lo, S. W. Liu, Y. Zhang, A. Lien, J. R. Xu, Angew. Chem.
Int. Ed., 2015, 54, 874-878.
16 K. Y. Sun, W. Jiang, X. X. Ban, B. Huang, Z. H. Zhang, M.
Y. Ye, Y. M. Sun, RSC Adv., 2016, 6, 22137-22143.
17 R. Furue, T. Nishimoto, I. S. Park, J. Lee, T. Yasuda, Angew.
Chem. Int. Ed., 2016, 55, 7171-7175.
linked Ac donor and TRZ acceptor molecules. Intermolecular
CT excitons of AmT and AmmT are generated more favorably
under non-doped conditions than in solution or under doped
conditions because of their spatial proximity. This means that
efficient formation of CT excitons results from intermolecular
interactions, rather than by AIE. AmT and AmmT are the first
TADF molecules based on intermolecular CT exciplexes
between donor-acceptor-type emitter molecules of a single
species. While AmT shows more efficient intramolecular CT
exciton formation than AmmT, the neat film of AmmT forms
an intermolecular CT state-induced exciplex better than AmT
because of the packing benefits and relatively shorter radiative
lifetime of AmmT. As a result, EL devices that use AmmT as
an emitter without a host exhibit an EQE over 18%. A single
molecule exciplex-based TADF system using intra- and
intermolecular CT excitons could be useful for developing high
efficiency non-doped OLEDs.
18 K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photon.
2012, 6, 234-248.
,
19 Y. S. Park, K. H. Kim, J. J. Kim, Appl. Phys. Lett., 2013, 102,
153306.
20 Z. Chen, X. K. Liu, C. J. Zheng, J. Ye, C. L. Liu, F. Li, X. M.
Ou, C. S. Lee, X. H. Zhang, Chem. Mater., 2015, 27, 5206-
5211.
21 D. Wang, W. L. Li, B. Chu, Z. S. Su, D. F. Bi, D. Y. Zhang,
J. Z. Zhu, F. Yan, Y. R. Chen, T. Tsuboi, Appl. Phys. Lett.
2008, 92, 053304.
22 L. Song, Y. S. Hu, Z. Q. Liu, Y. Lv, X. Y. Guo, X. Y. Liu,
ACS Appl. Mater. Interface, 2017, 9, 2711-2719.
23 K. Goushi, C. Adachi, Appl. Phys. Lett., 2012, 101, 023306.
24 S. N. Bagriantsev, K. H. Ang, A. Gallardo-Godoy, K. A.
Clark, M. R. Arkin, A. R. Renslo, D. L. Minor, ACS Chem.
Bio., 2013, 8, 1841-1851.
/ꢀꢃ ꢅꢈꢑꢆꢉ ꢀ ꢈꢃꢆꢇꢂꢇꢉꢆ
There are no conflicts to declare.
25 M. C. Suh, S. R. Park, Y. R. Cho, D. H. Shin, P. G. Kang, D.
A. Ahn, H. S. Kim, C. B. Kim, ACS Appl. Mater. Interface
2016, 8, 18256-18265.
,
!ꢑ,ꢃꢀꢏꢅꢇ ꢒꢇꢋꢇꢃꢆꢉ
26 B. Spingler, S. Schnidrig, T. Todorova, F. Wild,
CrystEngComm., 2012, 14, 751-757.
27 H. Tanaka, K. Shizu, H. Nakanotani, C. Adachi, J. Phys.
Chem. C, 2014, 118, 15985-15994.
This work was supported by the NRF grant
(2018R1A2B2001293) funded by the MSIP. We thank the
Samsung Display Co., Ltd. for partial financial support.
Equipments for low temperature PL experiments were
supported by CSOM (Prof. S. Y. Park). We are also grateful to
Ms. B. Sim (Prof. J. Kim) for measurements of absolute PL
quantum yields.
28 W. L. Tsai, M. H. Huang, W. K. Lee, Y. J. Hsu, K. C. Pan, Y.
H. Huang, H. C. Ting, M. Sarma, Y. Y. Ho, H. C. Hu, C. C.
Chen, M. T. Lee, K. T. Wong, C. C. Wu, Chem. Commun.
2015, 51, 13662-13665.
29 Y. N. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev.
2011, 40, 5361-5388.
,
,
30 J. J. Guo, X. L. Li, H. Nie, W. W. Luo, S. F. Gan, S. M. Hu,
R. R. Hu, A. J. Qin, Z. J. Zhao, S. J. Su, B. Tang, Adv. Funct.
Mater., 2017, 27, 1606458.
bꢀꢆꢇꢉ ꢄꢃ ꢂꢇ ꢇꢂꢇꢃꢑꢇꢉ
31 H. Kuhn, J. Chem. Phys., 1970, 53, 101.
32 J. Lee, N. Aizawa, M. Numata, C. Adachi, T. Yasuda, Adv.
1
2
C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913-
915.
K. Müllen, U. Scherf, Organic Light Emitting Devices:
Synthesis, Properties and Applications, Wiley-VCH,
Weinheim, Germany, 2006.
Mater., 2017, 29, 1604856
.
3
Y. J. Pu, G. Nakata, F. Satoh, H. Sasabe, D. Yokoyama, J.
Kido, Adv. Mater., 2012, 24, 1765-1770.
4
5
6
7
M. Zhu, C. Yang, Chem. Soc. Rev., 2013, 42, 4963-4976.
D. Y. Kondakov, J. Soc. Inf. Disp., 2009, 17, 137-144.
S. Jeong, J.-I. Hong, Dyes and Pigments, 2017, 144, 9-16.
S. Jeong, M.-K. Kim, S. H. Kim, J.-I. Hong, Org. Electron.
,
2013, 14, 2497-2504.
8
9
A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H.
Miyazaki, C. Adachi, Appl. Phys. Lett., 2011, 98, 083302.
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi,
Nature, 2012, 492, 234-240.
10 M. Kim, S. K. Jeon, S. H. Hwang, J. Y. Lee, Adv. Mater.
,
2015, 27, 2515-2520.
11 T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M.
Jiao, K. C. Pan, C. L. Yi, C. L. Chung, K. T. Wong, C. C.
Wu, Adv. Mater., 2016, 28, 6976-6983.
12 G. Mehes, H. Nomura, Q. S. Zhang, T. Nakagawa, C. Adachi,
Angew. Chem. Int. Ed., 2012, 51, 11311-11315.
13 Q. S. Zhang, J. Li, K. Shizu, S. P. Huang, S. Hirata, H.
Miyazaki, C. Adachi, J. Am. Chem. Soc., 2012, 134, 14706-
14709.
3 ꢘ Wꢀ bꢁꢂꢃꢓꢔ ꢐꢑꢕꢐꢔ ꢍꢍꢔ ꢕꢗꢖ
Çꢀꢁꢂ ꢃꢄꢅ ꢆꢇꢈ ꢁꢂ ꢉ Çꢀꢊ wꢄꢋꢇꢈ {ꢄꢌꢁꢊꢍꢋ ꢄꢎ /ꢀꢊꢏꢁꢂꢍ ꢋ ꢐꢑꢒꢒ
tꢈꢊꢇꢂꢊ !ꢄ ꢆꢄꢍ ꢇ!ꢃꢅꢂꢍ ꢏꢇ "ꢁꢆꢂ