Paper
RSC Advances
demonstrate that high graphitized degree of CNS is advantage
of formation of the surface Pd0 species due to enhancing the
electron transfer from CNS support to Pd. The Pd/CNS-5 catalyst
shows the highest conversion (ꢅ59.1%) and the highest selec-
tivity (ꢅ65.3%) towards HALD. And the other main reason is
that the different graphitized carbon nanosheets supports play
other roles on the conversion of CAL. The better graphitized
carbon nanosheets support is, the more adsorption of CAL is on
its surface. Although the strong p–p interactions is also
advantage of the contact of C]O with Pd species, the hydro-
6 S. Fleischer, S. Zhou, K. Junge and M. Beller, Angew. Chem.,
Int. Ed., 2013, 52, 5120–5124.
7 Z. Y. Guo, C. X. Xiao, R. V. Maligal-Ganesh, L. Zhou,
T. W. Goh, X. Li, D. Tesfagaber, A. Thiel and W. Huang,
ACS Catal., 2014, 4, 1340–1348.
˜
8 G. R. Bertolini, C. I. Cabello, M. Munoz, M. Casella,
D. Gazzoli, I. Pettiti and G. Ferraris, J. Mol. Catal. A: Chem.,
2013, 366, 109–115.
9 M. G. Prakash, R. Mahalakshmy, K. R. Krishnamurthy and
B. Viswanathan, Catal. Today, 2016, 263, 105–111.
genation activity of Pd for C]O is much weaker than for C]C. 10 Z. B. Tian, Q. Y. Li, J. Y. Hou, L. Pei, Y. Li and S. Y. Ai, J. Catal.,
Thus, the main product was still HALD by the hydrogenation 2015, 331, 193–202.
C]C of CAL over Pd/CNS catalyst. Therefore, the high catalytic 11 L. J. Durndell, C. M. A. Parlett, N. S. Hondow, M. A. Isaacs,
activity can be attributed to the high graphitization degree of K. Wilson and A. F. Lee, Sci. Rep., 2015, 5, 9425.
CNS support. The results conrm further the effect of graphi- 12 P. Gallezot and D. Richard, Catal. Rev.: Sci. Eng., 1998, 40,
tization degree on noble metal species and activity for selective
hydrogenation of CAL.
81–126.
13 P. Claus, Top. Catal., 1998, 5, 51–62.
¨
´
14 P. Maki-Arvela, J. Hajek, T. Salmi and D. Y. Murzin, Appl.
Catal., A, 2005, 292, 1–49.
Conclusions
ˇ
ˇ
´
´
15 Z. Brouckova, M. Czakova and M. Capka, J. Mol. Catal., 1985,
30, 241–249.
In summary, different graphitized carbon nanosheets materials
were investigated as a support for Pt and Pd catalysts for the
selective hydrogenation of CAL. The graphitization degree of
CNS supports can be well controlled by the amount of growth
catalysts (Fe species). The Pt/CNS and Pd/CNS catalysts have
nanosheets structures, highly dispersed Pt nanoparticles with
a particle size of ꢅ5 nm and Pd nanoparticles with a particle
size of ꢅ10 nm, respectively. The activity and selectivity of Pt/
CNS and Pd/CNS catalysts increases as the rise of graphitiza-
tion degree. The different catalytic activity and selectivity over
the Pt/CNS and Pd/CNS catalysts are attributed to the surface Pt0
and Pd0 content and the adsorption capacity for CAL on the
catalyst surface that are closely related to the graphitization
degree of CNS.
16 D. Wang, Y. J. Zhu, C. G. Tian, L. Wang, W. Zhou, Y. L. Dong,
Q. Han, Y. F. Liu, F. L. Yuan and H. G. Fu, Catal. Sci. Technol.,
2015, 109, 2403–2412.
17 T. Mitsudome and K. Kaneda, Green Chem., 2013, 15, 2636–
2654.
18 H. Vu, F. Gonçalves, R. Philippe, E. Lamouroux, M. Corrias,
Y. Kihn, D. Plee, P. Kalck and P. Serp, J. Catal., 2006, 240, 18–
22.
19 C. Rudolf, B. Dragoi, A. Ungureanu, A. Chirieac, S. Royer,
A. Nastro and E. Dumitriu, Catal. Sci. Technol., 2014, 4,
179–189.
20 T. Szumelda, A. Drelinkiewicz, R. Kosydar and J. Gurgul,
Appl. Catal., A, 2014, 487, 1–15.
21 W. W. Lin, H. Y. Cheng, L. M. He, Y. C. Yu and F. Y. Zhao, J.
Catal., 2013, 303, 110–116.
Acknowledgements
22 H. Wang, Y. Y. Shu, M. Y. Zheng and T. Zhang, Catal. Lett.,
2008, 124, 219–225.
This work was supported by Natural Sciences Fund of Hei-
longjiang Province (B2015009), the Innovative Research Project
of Key Laboratory of Functional Inorganic Material Chemistry
(Heilongjiang University), Ministry of Education (2015), the
Scientic Research Foundation for the Returned Overseas
Chinese Scholars, State Education Ministry (2013-1792) and
Ministry of Human Resources and Social Security (2013-277).
23 Y. J. Zhu and F. Zaera, Catal. Sci. Technol., 2014, 4, 955–962.
24 M. G. Prakash, R. Mahalakshmy, K. R. Krishnamurthy and
B. Viswanathan, Catal. Sci. Technol., 2015, 5, 3313–3321.
25 D. Wang, Y. J. Zhu, C. G. Tian, L. Wang, W. Zhou, Y. L. Dong,
H. J. Yan and H. G. Fu, ChemCatChem, 2016, 8, 1718–1726.
26 X. Xiang, W. H. He, L. S. Xie and F. Li, Catal. Sci. Technol.,
2013, 3, 2819–2827.
27 J. Teddy, A. Falqui, A. Corrias, D. Carta, P. Lecante, I. Gerber
and P. Serp, J. Catal., 2011, 278, 59–70.
28 N. Mahata, F. R. Goncalves, M. F. Pereira and
J. L. Figueiredo, Appl. Catal., A, 2008, 339, 159–168.
References
1 F. Zaera, J. Phys. Chem. B, 2002, 106, 4043–4052.
2 R. J. White, R. Luque, V. L. Budarin, J. H. Clark and 29 N. Job, R. Pirard, J. Marien and J. P. Pirard, Carbon, 2004, 42,
D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 481–494.
619–628.
3 G. A. Somorjai and J. Y. Park, Angew. Chem., Int. Ed., 2008, 47, 30 M. S. Ide, B. Hao, M. Neurock and R. J. Davis, ACS Catal.,
9212–9228.
2012, 2, 671–683.
4 G. Wienhofer, F. A. Westerhaus, K. Junge, R. Ludwig and 31 J. H. Vleeming, B. F. M. Kuster and G. B. Marin, Catal. Lett.,
M. Beller, Chem.–Eur. J., 2013, 19, 7701–7707. 1997, 46, 187–194.
5 B. Wu, H. Huang, J. Yang, N. Zheng and G. Fu, Angew. Chem., 32 K. Liberkova and R. Touroude, J. Mol. Catal. A: Chem., 2002,
¨
´
Int. Ed., 2012, 51, 3440–3443.
180, 221–230.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 98356–98364 | 98363