ChemSusChem
10.1002/cssc.201700968
FULL PAPER
(
TFT). The whole electrochemical measurement system was almost
similar to the alcohol oxidation reaction conditions except reaction
temperature. TBAPF was used as a conductive additive. Therefore, the
[7]
[8]
6
7602.
electrochemical method was an ex-situ measurement technique. FTIR
and attenuated total reflectance (ATR) were collected at a resolution of 4
cm-1 on Nicolet iS50 at room temperature (25 °C) and reaction
temperature (70 °C), respectively.
[9]
P. Weerachawanasak, J. Hutchings, G. J. K. Edwards, S. A. Kondrat, P.
J. Miedziak, P. Prasertham, J. Panpranot, Catal. Today, 2015, 250,
218–225.
[10] A. Abad, P.Concepcion, A. Corma, H. Garcia, Angew. Chem. Int. Ed.,
005, 44, 4066 –4069.
11] H. Tsunoyama, H. Sakurai, Y. Negishi, T. Tsukuda, J. Am. Chem. Soc.,
005, 127, 9374-9375.
2
[
[
[
The alcohol oxidation reactions were operated in a 48 ml pressure
bottle containing certain amounts of catalyst, substrates and oxidant. A
given amount of ethylbenzene was added as an internal standard in the
reaction solution after reaction for product analysis. The reaction solution
was sampled periodically and analyzed using gas chromatography with a
HP-5 column (Agilent 7890A). Conversion, yield, and selectivity for the
oxidation of alcohols to target products were defined as follows:
2
12] N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. Carley, L. Prati ,G.
J. Hutchings, Catal. Today, 2007, 122, 317–324.
13] N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. Carley, R. Tiruvalam,
C. J. Kiely, D. Bethell, G. J. Hutchings, Phys. Chem. Chem. Phys.,
2
009, 11, 5142–5153.
14] A. Abad, C. Almela, A. Corma, H. Garcia, Tetrahedron, 2006, 62,
666–6672.
[
[
[
[
6
0 r 0
Conversion (%)= [(C -C )/C ]×100
15] A. Villa, N. Janjic, P. Spontoni, D. Wang, D. S. Su, L. Prati, Appl. Catal.
A: Gen., 2009, 364, 221–228.
p 0
Yield (%)= C /C ×100
16] W. Li, Y. Gao, W. Chen, P. Tang, W. Li, Z. Shi, D. Su, J. Wang, D. Ma,
ACS Catal., 2014, 4, 1261-1266.
p 0 r
Selectivity (%)=[C /(C -C )]×100
17] Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D. Su, J. Wang, X. Bao, D. Ma,
Angew. Chem. Int. Ed., 2013, 52, 2109-2113.
where C
0
is the initial concentration of alcohol, and C
r
and C
p
are the
[18] Y. Lin, X. Pan, W. Qi, B. Zhang, D. S. Su, J. Mater. Chem. A, 2014, 2,
12475-12483.
concentration of reactants and products, respectively, at a certain time
after the reaction. The concentration of reactants and products can be
measured by an internal standard method (based on integral area
method). The carbon balance based on the observed products can be
calculated as:
[19] D. S. Su, S. Perathoner, G. Centi, Chem. Rev., 2013, 113, 5782-5816.
[20] J. Luo, F. Peng, H. Yu, H. Wang, Chem. Eng. J., 2012, 204, 98–106.
[21] Y. Kuang, N. M. Islam, Y. Nabae, T. Hayakawa, M.-a. Kakimoto, Angew.
Chem., 2010, 122, 446-450.
[22] Y. Lin,D. Su, ACS Nano, 2014, 8, 7823-7833.
[
23] Y. Meng, D. Voiry, A. Goswami, X. Zou, X. Huang, M. Chhowalla, Z.
Liu, T. Asefa, J. Am. Chem. Soc., 2014, 136, 13554−13557.
Carbon balance (%)= [(Caldehydes + Ctert-butyl alcohol +Cresidue
, alcohols+Cresidue,
oxidant)/(C0, alcohols+ C0, oxidant)]×100
[24] A. Gharib1, L. V. Fard, N. N. Pesyan, M. Roshani, Chemistry. 2015, 1,
1
51-158.
where
aldehydes residue, alcohols tert-butyl alcohol
C , C , C , Cresidue, oxidant are the
[
25] M. A. Patel, F. Luo, M.R. Khoshi, E. Rabie, Q. Zhang, Carol R. Flach, R.
concentrations of aldehydes, unreacted alcohols, tert-butyl alcohol (the
main product derives from the decomposition of TBHP during the
reaction) and unreacted TBHP, respectively.
Mendelsohn, E. Garfunkel, M. Szostak, H. He, ACS Nano, 2016, 10,
2
305–2315.
26] H. Watanabe, S. Asano, S.-i. Fujita, H. Yoshida, M. Arai, ACS Catal.,
015, 5, 2886–2894.
[
[
[
[
[
2
27] T. Petit, J. C. Arnault, H. A. Girard, M. Sennour, T. Y. Kang, C. L.
Cheng, P. Bergonzo, Nanoscale, 2012, 4, 6792–6799.
Acknowledgements ((optional))
28] X. Sun, R. Wang, B. Zhang, R. Huang, X. Huang, D. S. Su, T. Chen, C.
Miao, W. Yang, ChemCatChem, 2014, 6, 2270 – 2275.
The authors acknowledge the financial support from "Strategic
Priority Research Program" of the Chinese Academy of
Sciences, Grant No. XDA09030103.
29] R. Wang, X. Sun, B. Zhang, X. Sun, D. S. Su, Chem. Eur. J, 2014, 20,
6324–6331.
30] V. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Mal'kov, V. M. Titov,
Chem. Phys. Lett., 1994, 222, 343-348.
Keywords: nanodiamond • selective oxidation • electrochemical
[31] Z. Qiao, J. Li, N. Zhao, C. Shi, Philip. Nash, Scripta Mater., 2006, 54,
25–229.
2
•
carbocatalysis • redox potential
[
32] V. Peneau, Q. He, G. Shaw, S. A. Kondrat, T. E. Davies, P. Miedziak,
M. Forde, N. Dimitratos, C. J. Kiely, G. J. Hutchings. Phys. Chem.
Chem. Phys., 2013, 15, 10636-10644.
[
[
[
1]
G.-J. T. Brink, I. W. C. E. Arends, R. A. Sheldon, Science, 2000, 287,
1
113.
H. Wang, W. Fan, Y. He, J. Wang, J. N. Kondo, T. Tatsumi, J. Catal.,
013, 299, 10-19.
[
[
[
[
[
[
33] V. R. Choudhary, D. K. Dumbre. Ind. Eng. Chem. Res., 2009, 48,
2]
3]
9
471–9478.
34] V. R. Choudhary, D. K. Dumbre, Appl. Catal. A: Gen., 2010, 375, 252–
57.
4
2
2
35] K. Dhanalaxmi, R. Singuru, S. K. Kundu, B. M. Reddy, A. Bhaumik,
John. Mondal, RSC Adv., 2016, 6, 36728-36735.
[
4]
5]
T. Mallat, Baiker, A. Chem. Rev., 2004, 104, 3037-3058.
[
D. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F.
Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J.
Hutchings, Science, 2006, 311, 362-365.
36] J. E. Chàveza, C. Crottib, E. Zangrandoa, E. Farnettia, J. Mol. Catal. A:
Chem., 2016, 421, 189–195.
37] S. Wu, G. Weng, J. Wang, J. Rong, B. Zong, D. S. Su, Catal. Sci.
Technol., 2014, 4, 4183-4187.
[6]
B.-Z. Zhan, M. A. White, T.-K. Sham, J. A. Pincock, R. J. Doucet, K. V.
Ramana Rao, K. N. Robertson, T. S. Cameron, J. Am. Chem. Soc.,
38] S. Wu, G. Weng, X. Liu, B. Zhong and D. S. Su, ChemCatChem, 2014,
2003, 125, 2195-2199.
6, 1558-1561.
This article is protected by copyright. All rights reserved.