Communication
ChemComm
surfaces with inert (hydrogen-terminated) and reactive/binding
(thiol-terminated) areas may find sensing applications, e.g., for
biomolecular and ionic recognitions.
This work was supported by AcRF Tier 2 from the Ministry of
Education in Singapore (MOE2017-T2-1-018).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 E. H. Discekici, A. H. St. Amant, S. N. Nguyen, I.-H. Lee, C. J. Hawker
and J. Read de Alaniz, J. Am. Chem. Soc., 2018, 140, 5009–5013.
2 N. H. Nguyen, M. E. Levere, J. Kulis, M. J. Monteiro and V. Percec,
Macromolecules, 2012, 45, 4606–4622.
´
3 J. G. Hernandez and C. Bolm, J. Org. Chem., 2017, 82, 4007–4019.
4 B. M. Peterson, V. Kottisch, M. J. Supej and B. P. Fors, ACS Cent. Sci.,
2018, 4, 1228–1234.
5 C. G. Wang and A. Goto, J. Am. Chem. Soc., 2017, 139, 10551–10560.
6 J. Zheng, C.-G. Wang, Y. Yamaguchi, M. Miyamoto and A. Goto,
Angew. Chem., Int. Ed., 2018, 130, 1568–1572.
7 K. Matyjaszewski, Adv. Mater., 2018, 30, 1706441.
8 D. J. Keddie, G. Moad, E. Rizzardo and S. H. Thang, Macromolecules,
2012, 45, 5321–5342.
9 J. Nicolas, Y. Guillaneuf, C. Lefay, D. Bertin, D. Gigmes and
B. Charleux, Prog. Polym. Sci., 2013, 38, 63–235.
10 M. A. Tasdelen, M. U. Kahveci and Y. Yagci, Prog. Polym. Sci., 2011,
36, 455–567.
Fig. 3 (a) Synthesis of PBA-I brushes via surface-initiated organocatalyzed
LRP. (b) Surface patterning of H and SH chain end functionalized polymer
brushes and subsequent attachment of CPM. (c) Optical microscope image of
the glass photomask. (d) Fluorescence microscope image of CPM-attached
patterned PBA brushes.
H chain end functionalities in a single step. The single step
manner is a unique advantage of this approach.
´ ˆ
11 A. Debuigne, M. Hurtgen, C. Detrembleur, C. Jerome, C. Barner-
Kowollik and T. Junkers, Prog. Polym. Sci., 2012, 37, 1004–1030.
PBA-I brushes were uniformly fabricated on silicon wafers 12 D. J. Lunn, E. H. Discekici, J. Read de Alaniz, W. R. Gutekunst and
C. J. Hawker, J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 2903–2914.
13 D. Vinciguerra, J. Tran and J. Nicolas, Chem. Commun., 2018, 54,
(without patterning) via surface-initiated organocatalyzed LRP
(Fig. 3a). Concentrated polymer brushes (with surface occupancy
228–240.
(s*) 4 10%) with different thicknesses (20 and 30 nm) were 14 A. B. Lowe, Polym. Chem., 2010, 1, 17–36.
´
15 D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli and
prepared (Table S1, ESI†). A cysteamine solution (5 wt% in
diglyme/1-butanol (w/w = 1/1)) was dropped on the polymer
brush, which was covered by a cover glass. A glass photomask
containing repeating squares (Fig. 3c) or a copper grid (Fig. S6a,
ESI†) was placed on the cover glass. After UV irradiation for 2 h,
the chain end iodide was converted to SH in the masked area
and to H in the unmasked area (Fig. 3b). We subsequently
labelled SH with a fluorescence maleimide, 7-diethylamino-3-
C. N. Bowman, Chem. Mater., 2014, 26, 724–744.
16 N. V. Tsarevsky and K. Matyjaszewski, Macromolecules, 2002, 35,
9009–9014.
17 A. Klaikherd, C. Nagamani and S. Thayumanavan, J. Am. Chem. Soc.,
2009, 131, 4830–4838.
18 I. Mukherjee, S. K. Sinha, S. Datta and P. De, Biomacromolecules,
2018, 19, 2286–2293.
19 J. Shan and H. Tenhu, Chem. Commun., 2007, 4580–4598.
20 V. Coessens and K. Matyjaszewski, Macromol. Rapid Commun., 1999,
20, 66–70.
(4-maleimidophenyl)-4-methylcoumarin (CPM), via the thiol- 21 K. M. Mattson, C. W. Pester, W. R. Gutekunst, A. T. Hsueh,
E. H. Discekici, Y. Luo, B. V. K. J. Schmidt, A. J. McGrath,
maleimide Michael addition (Fig. 3b). A fluorescence pattern
P. G. Clark and C. J. Hawker, Macromolecules, 2016, 49, 8162–8166.
was clearly observed using a fluorescence microscope (Fig. 3d for
22 E. H. Discekici, S. L. Shankel, A. Anastasaki, B. Oschmann, I.-H. Lee,
30 nm thick brush with the glass photomask), demonstrating
the selective chain end modification of the polymer brush.
A similarly clear fluorescence pattern was observed with the
J. Niu, A. J. McGrath, P. G. Clark, D. S. Laitar, J. Read de Alaniz,
C. J. Hawker and D. J. Lunn, Chem. Commun., 2017, 53, 1888–1891.
23 A. Goto, A. Ohtsuki, H. Ohfuji, M. Tanishima and H. Kaji, J. Am.
Chem. Soc., 2013, 135, 11131–11139.
copper grid (Fig. S6b, ESI†) and for the brushes with different 24 A. Ohtsuki, L. Lei, M. Tanishima, A. Goto and H. Kaji, J. Am. Chem.
Soc., 2015, 137, 5610–5617.
25 C.-G. Wang, F. Hanindita and A. Goto, ACS Macro Lett., 2018, 7,
thicknesses (Fig. S7, ESI†). These results demonstrate the versatility
in photomasks and brush thicknesses.
263–268.
In conclusion, an inexpensive and non-toxic cysteamine was 26 C.-G. Wang, C. Chen, K. Sakakibara, Y. Tsujii and A. Goto, Angew.
Chem., Int. Ed., 2018, 57, 13504–13508.
27 C. Chen, L. Xiao and A. Goto, Macromolecules, 2016, 49, 9425–9440.
28 A. Anastasaki, J. Willenbacher, C. Fleischmann, W. R. Gutekunsta
successfully employed as a photo-selective chain end modification
agent of polymer-I. By simply switching UV light on and off,
polymer-I was selectively transformed to polymer-H and
polymer-SH, respectively, in a facile and quantitative manner.
A unique application was a single-step preparation of patterned
polymer brushes with SH and H chain end functionalities. Patterned
and C. J. Hawker, Polym. Chem., 2017, 8, 689–697.
29 J. O. Zoppe, N. C. Ataman, P. Mocny, J. Wang, J. Moraes and H.-A. Klok,
Chem. Rev., 2017, 117, 1105–1318.
30 Y. Tsujii, K. Ohno, S. Yamamoto, A. Goto and T. Fukuda, Adv. Polym.
Sci., 2006, 197, 1–45.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 13738--13741 | 13741