Journal of Chemical & Engineering Data
ARTICLE
Table 3. Vapor Pressure Coefficients of Equation 2 for
Dialkyl Esters of Dicarboxylic Acids
NK_149 P (GC-P1660), Scientists and Educators of Innovative
Russia (2009-2013).
compounds
temperature range, K
a
b
Δgl Cp
’ REFERENCES
diethyl oxalate
283.5 to 458.8
283.7 to 472.0
290.1 to 489.6
298.3 to 510.0
303.4 to 523.9
293.5 to 486.6
308.2 to 523.9
318.7 to 540.0
313.2 to 457.7
313.1 to 563.1
307.57
321.86
333.19
-81385.52
-87949.79
-93562.27
78.2
86.5
94.8
(1) Zeikus, J.; Jain, M.; Elankovan, P. Biotechnology of succinic acid
production and markets for derived industrial products. Appl. Microbiol.
Biotechnol. 1999, 51, 545–552.
diethyl malonate
diethyl succinate
diethyl glutarate
diethyl adipate
dipropyl oxalate
dipropyl succinate
dipropyl adipate
dibutyl succinate
dibutyl adipate
(2) Wolf, O.; Crank, M.; Patel, M.; Marscheider-Weidemann, F.;
Schleich, J.; H€using, B.; Angerer, G. Techno-economic feasibility of
large-scale production of Bio-based polymers in Europe. European
Science and Technology Observatory. 2005, EUR 22103 42 EN.
(3) Verevkin, S.; Kozlova, S.; Emel’yanenko, V.; Nikitin, E.; Popov,
A.; Krasnykh, E. Vapor pressures, enthalpies of vaporization, and critical
parameters of a series of the linear aliphatic dimethyl esters of dicar-
boxylic acids. J. Chem. Eng. Data 2006, 51, 1896–1905.
348.03 -100716.15 103.1
364.39 -108100.31 111.4
332.37
-92817.18
94.8
359.27 -105719.28 111.4
400.00 -123641.37 127.9
389.01 -119340.17 127.9
430.12 -137398.93 144.5
(4) Verevkin, S. P.; Beckhaus, H.-D.; Belen’kaja, R. S.; Rakus, K.;
R€uchardt, C. Geminal Substituent Effects. 9. Enthalpies of Formation
and Strain Free Increments of Branched Esters and Ethers. Thermochim.
Acta 1996, 279, 47–64.
(5) Verevkin, S. P.; Heintz, A. Determination of Vaporization
Enthalpies of the Branched Esters from Correlation Gas-Chromatogra-
phy and Transpiration Methods. J. Chem. Eng. Data 1999,
44, 1240–1244.
of dicarboxylic acids.3 We have used Kovat’s indices obtained in
our previous work10 and own results for ΔlgHm(298.15 K) for
alkyl esters of dicarboxylic acids (see Table 2) to test how the
results fit into a systematic dependence on Kovat’s indices.
Experimental Jx values for alkyl esters of dicarboxylic acids with
n = 0 to 4, used in this work, are given in Table S2, Supporting
Information. It is apparently from Figures 5 and 6 that the data
for Δgl Hm(298.15 K) fit very well in the linear correlation. This
fact could serve as evidence of the internal consistency of our
experimental results for vaporization enthalpies.
Vapor Pressure Correlations for Dialkyl Esters of Dicar-
boxylic Acids. Taking the generally good agreement between
vapor pressure data reported in this work and the literature into
account, the experimental data (if it has been possible) were
regressed together to develop correlations accurately describing
the vapor pressure of dialkyl esters of dicarboxylic acids over a
temperature range from ambient to the normal boiling point.
Table 3 summarizes coefficients of the vapor pressure correlation
(eq 3) for dialkyl esters of dicarboxylic acids, which could be used
for thermochemical and technical calculations.
(6) Krasnykh, E. L.; Verevkin, S. P.; Koutek, B.; Doubsky, J. Vapor
Pressures and Enthalpies of Vaporization of a Series of the n-Alkyl
Acetates. J. Chem. Thermodyn. 2006, 38, 717–723.
(7) Verevkin, S. P.; Dogan, B.; Beckhaus, H.-D.; R€uchardt, C.
Synergic destabilization bei geminal ester groups. Angew. Chem. 1990,
102, 693-694; Angew. Chem., Int. Ed. Engl. 1990, 29, 674.
(8) Verevkin, S. P.; Beckhaus, H.-D.; R€uchardt, C. Geminal Substituent
Effects. V. Enthalpies of Formation of Alkylsubstituted Malonic Acid and
Aminocarboxylic Acid Esters. Thermochim. Acta 1992, 197, 27–39.
(9) Rakus, K.; Verevkin, S. P.; Keller, M.; Beckhaus, H.-D.; R€uchardt,
C. Substituent Effects on the Strength of C-C Bonds. 19. Geminal
Substituent Effects. 10. Radical Stabilisation Enthalpies of Bis-
(methoxycarbonyl)alkyl- and Tris(methoxycarbonyl)methyl Radikals.
Liebigs Ann. 1995, 1, 1483–1493.
(10) Lipp, S. V.; Krasnykh, E. L.; Levanova, S. V. Retention indices
of symmetric dicarboxylic acid esters. J. Anal. Chem. 2008, 63, 349–352.
(11) Verevkin, S. P. Pure Component Phase Changes Liquid and
Gas. In Experimental Thermodynamics: Measurement of the thermody-
namic properties of multiple phases; Weir, R. D., De Loss, Th. W., Eds.;
Elsevier: New York, 2005; Vol. 7, Chapter 1, pp 6-30.
’ ASSOCIATED CONTENT
(12) Kulikov, D. V.; Verevkin, S. P.; Heintz, A. Enthalpies of
vaporization of a series of linear aliphatic alcohols. Experimental
measurements and application of the ERAS-model for their prediction.
Fluid Phase Equilib. 2001, 192, 187–202.
(13) Chickos, J. S.; Hesse, D. G.; Liebman, J. F. A Group Additivity
Approach for the Estimation of Heat Capacities of Organic Liquids and
Solids. Struct. Chem. 1993, 4, 261–269.
(14) Chickos, J. S.; Acree, W. E., Jr. Enthalpies of Vaporization of
Organic and Organometallic Compounds, 1880-2002. J. Phys. Chem.
Ref. Data 2003, 32, 519–878.
(15) Chickos, J. S.; Acree, W. E., Jr. Enthalpies of Sublimation of
Organic and Organometallic Compounds, 1910-2001. J. Phys. Chem.
Ref. Data 2002, 31, 537–698.
(16) Stephenson, R. M.; Malanowski, S. Handbook of the Thermo-
dynamics of Organic Compounds; Elsevier: New York, 1987.
(17) Heiber, W.; Reindl, E. Bildungsw€armen und constitution von
molek€ulverbindungen des zinntetrachlorids. Ztschr. Elektrochem. 1940,
10, 559–570.
(18) Stull, D. R. Vapor Pressure of Pure Substances Organic
Compounds. Ind. Eng. Chem. 1947, 39, 517–540.
(19) Dykyj, J.; Svoboda, J.; Wilhoit, R. C.; Frenkel, M.; Hall, K. R.
Vapour Pressure of chemicals. Subvolume B. Vapour Pressure and Antoine
Coefficient for Oxygen-Containing Organic Compaunds. Thermodynamics
Research Center. The Texas A&M University system, 1998.
S
Supporting Information. Experimental data on enthal-
b
pies of vaporization of the methyl esters of dicarboxylic acids
(Table S1); Kovat’s indices on the OV-101 phase at 423.15 K of
the linear symmetric alkyl esters of dicarboxylic acids (Table S2);
comparison of the vapor pressures available for alkyl esters of
dicarboxylic acids (Figures S1 to S7). This material is available
’ AUTHOR INFORMATION
Corresponding Author
*Telephone: þ49 381 498 6508). Fax: þ49 381 498 6524.
E-mail: sergey.verevkin@uni-rostock.de.
Funding Sources
Svetlana Lipp acknowledges gratefully a research scholarship
from the DAAD (Deutscher Akademischer Austauschdienst).
Sergey P. Verevkin acknowledges gratefully financial support
from the Research Training Group 1213 “New Methods for
Sustainability in Catalysis and Technique” of the German
Science Foundation (DFG). Eugen L. Krasnykh acknowledges
gratefully financial support from the Federal Target Program
809
dx.doi.org/10.1021/je100231g |J. Chem. Eng. Data 2011, 56, 800–810