K. Nakamura, R. Yamanaka / Tetrahedron: Asymmetry 13 (2002) 2529–2533
2533
equipped on Shimadzu GC-14B with C-R6A. Yields were
References
determined by GC analyses using naphthalene or
chlorobenzene as internal standards. Enantiomeric puri-
ties of the products were determined by GC analyses. The
absolute configurations of the products, alcohol were
determined by comparing the GC retention times with
those of authentic samples.
1. (a) Itoh, T.; Sakabe, K.; Kudo, K.; Ohara, H.; Takagi,
Y.; Kihara, H.; Zagatti, P.; Renou, M. J. Org. Chem.
1999, 64, 252–265; (b) O’Hagan, D.; Rzepa, H. S. J.
Chem. Soc., Chem. Commun. 1997, 645–652; (c) Ge, P.;
Kirk, K. L. J. Org. Chem. 1997, 62, 3340–3343; (d)
Altenburger, J. M.; Schirlin, D. Tetrahedron Lett. 1991,
4.2. Cultivation
3
2, 7255–7258; (e) Matsuda, F.; Matsumoto, T.; Ohsaka,
M.; Terashima, S. Tetrahedron Lett. 1989, 30, 4259–4262;
f) Welch, J. T. Tetrahedron 1987, 43, 3123–3197.
Synechococcus elongatus PCC 7942 was grown in BG-11
(
1
5
medium (pH 8.0) under continuous illumination pro-
2
. (a) Nakamura, K.; Matsuda, T. In Enzyme Catalysis in
Organic Synthesis; 2nd ed.; Drauz, K.; Waldmann, H.,
Eds.; Wiley-VCH: Weinheim, 2002; Vol. III, pp. 991–
−
1
−2
vided by fluorescent lamps (40 mmol photons s m ) with
air-bubbling at 25°C. Cell density was measured by A7
20
with a spectrophotometer (Hitachi U-3210).
1047; (b) Fessner, W. D. In Biocatalysis from discovery to
application; Springer-Verlag: Berlin, 2000; (c) Faber, K.
In Biotransformations; Springer-Verlag: Berlin, 2000; (d)
Roberts, S. M. J. Chem. Soc., Perkin Trans. 1 2000,
4
.3. General procedure for the reduction of ketones
with S. elongatus PCC 7942
6
1
11–633; (e) Roberts, S. M. J. Chem. Soc., Perkin. Trans.
1999, 1–21.
The ketone (10 mmol) was added to a suspended culture
of S. elongatus PCC 7942 (1 g/L as dry weight) in BG-11
medium (20 mL). The mixture was shaken at 140 rpm
and 25°C, and the resulting mixture was extracted with
ether and eluted by Extrelut. The chemical and enan-
tiomeric purities were determined by GC analyses. The
GC conditions and the retention times of substrates,
products, and internal standards are as follows: acetophe-
none; CPCD 110°C, ketone 9.8 min, S-alcohol 14.4 min,
R-alcohol 13.9 min, chlorobenzene 3.6 min: a-
monofluoroacetophenone; CPCD 120°C, ketone 5.6 min,
S-alcohol 12.6 min, R-alcohol 13.7 min, naphthalene 10.5
min: a,a-difluoroacetophenone; CPCD 120°C, ketone 4.1
min, S-alcohol 15.8 min, R-alcohol 17.0 min naphthalene
3
4
. Nakamura, K.; Kawai, Y.; Nakajima, N.; Ohno, A. J.
Org. Chem. 1991, 56, 4778–4783.
. (a) Nakamura, K.; Inoue, Y.; Matsuda, T.; Misawa, I. J.
Chem. Soc., Perkin 1 1999, 2397–2402; (b) Rotthaus, O.;
Kr u¨ ger, D.; Demuth, M.; Schaffner, K. Tetrahedron
1997, 53, 935–938; (c) Nakamura, K.; Kondo, S.; Naka-
jima, N.; Ohno, A. Tetrahedron 1995, 51, 687–694; (d)
Nakamura, K.; Inoue, Y.; Ohno, A. Tetrahedron Lett.
1995, 36, 265–266.
5. (a) Nakamura, K.; Fujii, M.; Ida, Y. J. Chem. Soc.,
Perkin 1 2000, 3205–3211; (b) D’Arrigo, P.; Fuganti, C.;
Pedrocchi, G.; Fantoni, P.; Servi, S. Tetrahedron 1998,
54, 15017–15026; (c) D’Arrigo, P.; Lattanzio, M.; Pedroc-
chi, G.; Fantoni, P.; Servi, S. Tetrahedron: Asymmetry
1998, 9, 4021–4026.
1
0.5 min: a,a,a-trifluoroacetophenone; CPCD 120°C,
ketone 3.6 min, S-alcohol 17.5 min, R-alcohol 18.1 min,
naphthalene 10.5 min.
6
. (a) Matsuda, T.; Nakajima, Y.; Harada, T.; Nakamura,
K. Tetrahedron: Asymmetry 2002, 13, 971–974; (b) Mat-
suda, T.; Harada, T.; Nakajima, N.; Nakamura, K. Tet-
rahedron Lett. 2000, 41, 4135–4138; (c) Nakamura, K.;
Matsuda, T. J. Org. Chem. 1998, 63, 8957–8964.
. (a) Scheibe, R. Bot. Acta 1990, 103, 327–334; (b)
Erlanger, B. F. Annu. Rev. Biochem. 1976, 45, 257–283.
. The yields and the enantioselectivities roughly increased
according to light intensities.
4
.4. Method used to investigate the effect of addition
of DCMU on the reduction of a,a-difluoroacetophenone
by S. elongatus PCC 7942
a,a-Difluoroacetophenone (10 mmol) was added to a
suspended culture of S. elongatus PCC 7942 (1 g/L as dry
weight) in BG-11 medium (20 mL) with or without
DCMU (10 mM) in DMSO (100 mL). The mixture was
shaken at 140 rpm and 25°C for 24 h under illumination
7
8
9
. Nakamura, K.; Yamanaka, R. J. Chem. Soc., Chem.
Commun. 2002, 1782–1783.
−
1
−2
(
fluorescent light; 13.4 photons mmol s m ) or darkness
and the resulting mixture was extracted with ether and
eluted by Extrelut. The chemical and enantiomeric puri-
ties were determined by GC analyses.
1
1
0. Trebst, A. Methods Enzymol. 1980, 69, 675–715.
1. Oxidation of the reduced form of coenzymes by cell free
extract of the microbe in the presence of 1 reveal that
NADPH is effective but NADH is less effective.
2. Previously, we reported that methyl aryl ketones were
reduced to the corresponding (S)-alcohol by S. elongatus
PCC 7942 in the light: Nakamura, K.; Yamanaka, R.;
Tohi, K.; Hamada, H. Tetrahedron Lett. 2000, 41, 6799–
6802.
13. Matsuda, T.; Harada, T.; Nakajima, N.; Itoh, T.; Naka-
mura, K. J. Org. Chem. 2000, 65, 157–163.
14. (a) Smith, H. Nature 2000, 407, 585–591; (b) Ocheretina,
O.; Haferkamp, I.; Tellioglu, H.; Scheibe, R. Gene 2000,
258, 147–154; (c) Gietl, C. Biochim. Biophys. Acta 1992,
1100, 217–234.
4
.5. Method used to investigate the effect of DCMU
1
concentration on the reduction of a,a-difluoroacetophe-
none by S. elongatus PCC 7942
a,a-Difluoroacetophenone (10 mmol) was added to a
suspended culture of S. elongatus PCC 7942 (1 g/L as dry
weight) in BG-11 medium (20 mL) with DCMU (0, 0.1,
5
, 100 mM) in DMSO (100 mL). The mixture was shaken
at 140 rpm and 25°C for 30 h under illumination
−
1
−2
(
fluorescent light; 13.4 photons mmol s m ) and the
resulting mixture was extracted with ether and eluted by
Extrelut. The chemical and enantiomeric purities were
determined by GC analyses.
15. Rippka, R. Methods Enzymol. 1988, 167, 675–715.