Organometallics
Communication
Scheme 5
ACKNOWLEDGMENTS
■
Y.U. thanks the Japan Society for the Promotion of Science for
a postdoctoral fellowship. We are grateful to the National
Institutes of Health for generous financial support (R01
GM85235).
REFERENCES
■
(1) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47,
1560−1638.
(2) (a) Beutner, G. L.; Denmark, S. E. Angew. Chem., Int. Ed. 2013,
DOI: 10.1002/anie.201302084. (b) Beutner, G. L.; Denmark, S. E.
Top. Organomet. Chem. 2013, 44, 55−89. (c) Denmark, S. E.; Fujimori,
S. In Modern Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH:
Weinheim, Germany, 2004; Vol. 2, Chapter 7. (d) Denmark, S. E.;
Stavenger, R. A. Acc. Chem. Res. 2000, 33, 432−440.
(3) (a) Denmark, S. E.; Kalyani, D.; Collins, W. R. J. Am. Chem. Soc.
2010, 132, 15752−15765. (b) Denmark, S. E.; Collins, W. R. Org. Lett.
2007, 9, 3801−3804.
(4) (a) Denmark, S. E.; Jaunet, A. J. Am. Chem. Soc. 2013, 135,
6419−6422. (b) Denmark, S. E.; Kornfilt, D. J. P.; Vogler, T. J. Am.
Chem. Soc. 2011, 133, 15308−15311. (c) Denmark, S. E.; Collins, W.
R.; Cullen, M. D. J. Am. Chem. Soc. 2009, 131, 3490−3492.
(d) Denmark, S. E.; Vogler, T. Chem. Eur. J. 2009, 15, 11737−11745.
(5) (a) Denmark, S. E.; Burk, M. T. Org. Lett. 2012, 14, 256−259.
(b) Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107,
20655−20660.
To differentiate between these two catalytic cycles, control
experiments were conducted. Mechanism III posits that the
reduction involves Et3SiNTf2 as the activator and Et3SiH as the
reducing agent but does not require 9-BBN-H. Accordingly, 5a,
Et3SiH, and 0.1 equiv each of TMSNTf2 and 2,6-lutidine were
combined in CH2Cl2 at rt. The reaction required 6 h to reach
full conversion and afforded 7a in 92% yield. In contrast, an
identical reaction containing 0.1 equiv of 9-BBN-H dimer was
complete within 10 min to afford 7a in 96% yield. Thus,
although Mechanism III is viable, it does not compete with
Mechanism II under the established reaction conditions.
In a final set of experiments, the stability of silyl ether 7a in
the presence of Et3SiH and both catalysts was tested.
Treatment of 7a with 1 resulted in the formation of 6a in
99% yield after 10 min. However, 7a did not react with
borenium cation 3e even after 24 h. These results further
support the operation of Mechanism II and also explain the
formation of the reduced product 6a in the reaction without
2,6-lutidine.
In conclusion, the interaction of various Lewis bases with 9-
BBN-NTf2 has been investigated. The stable borenium cation
complex 3e catalyzed the hydrosilylation of ketones. Mecha-
nistic studies revealed that this reaction takes place via a
hydride abstraction pathway similar to that for (C6F5)3B-
catalyzed hydrosilylation of ketones. Further studies on this
concept, including the development of other activation modes
and asymmetric reactions, will be reported in due course.
(6) Burk, M. T. Ph.D. Thesis, University of Illinois, Urbana-
Champaign, IL, 2012.
(7) (a) Gutmann, V. The Donor-Acceptor Approach to Molecular
Interactions; Plenum Press: New York, 1978. (b) Gutmann, V. Coord.
Chem. Rev. 1975, 15, 207−237.
(8) (a) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. Chem. Rev. 2012,
112, 4246−4282. (b) Piers, W. E.; Bourke, S. C.; Conroy, K. D. Angew.
Chem., Int. Ed. 2005, 44, 5016−5036. (c) Kolle, P.; Noth, H. Chem.
̈
̈
Rev. 1985, 85, 399−418.
(9) Interestingly, one of the very early methods described for the
generation of borenium ions termed “nucleophilic addition” by Noth
̈
or “nucleophilic addition-heterolysis” by Vedejs is, in fact, Lewis base
activation of the boron Lewis acid.
(10) (a) Del Grosso, A.; Singleton, P. J.; Muryn, C. A.; Ingleson, M. J.
Angew. Chem., Int. Ed. 2011, 50, 2102−2106. (b) Genaev, A. M.; Nagy,
S. M.; Salnikov, G. E.; Shubin, V. G. Chem. Commun. 2000, 1587−
1588. (c) De Vries, T. S.; Prokofjevs, A.; Harvey, J. N.; Vedejs, E. J.
Am. Chem. Soc. 2009, 131, 14679−14687.
(11) Corey, E. J. Angew. Chem., Int. Ed. 2009, 48, 2100−2117.
(12) (a) Eisenberger, P.; Bailey, A. M.; Crudden, C. M. J. Am. Chem.
Soc. 2012, 134, 17384−17387. (b) Prokofjevs, A.; Boussonnier
̀
e, A.; Li,
L.; Bonin, H.; Lacote, E.; Curran, D. P.; Vedejs, E. J. Am. Chem. Soc.
̂
2012, 134, 12281−12288. (c) Farrell, J. M.; Hatnean, J. A; Stephan, D.
W. J. Am. Chem. Soc. 2012, 134, 15728−15731. (d) Chen, J.;
Lalancette, R. A; Jakle, F. Chem. Commun. 2013, 4893−4895.
̈
(13) Prokofjevs, A.; Kampf, J. W.; Vedejs, E. Angew. Chem., Int. Ed.
2011, 50, 2098−2101.
(14) Boronate 9a was prepared by reaction of 9-BBN-H with
authentic carbinol 8a; see the Supporting Information.
(15) Hydrosilylation of imines with neutral boranes proceeds by a
different mechanism than that by borenium ions: Mewald, M.;
Oestreich, M. Chem. Eur. J. 2012, 18, 14079−14084.
(16) 9-BBN-H dimer was treated with 2,6-lutidine in CH2Cl2 at
room temperature. After 24 h, 11B NMR analysis showed no change.
(17) (a) Piers, W. E.; Marwitz, A. J. V.; Mercier, L. G. Inorg. Chem.
2011, 50, 12252−12262. (b) Parks, D. J.; Blackwell, J. M.; Piers, W. E.
J. Org. Chem. 2000, 65, 3090−3098. (c) Parks, D. J.; Piers, W. E. J. Am.
Chem. Soc. 1996, 118, 9440−9441. (d) Rendler, S.; Oestreich, M.
Angew. Chem., Int. Ed. 2008, 47, 5997−6000.
ASSOCIATED CONTENT
* Supporting Information
Text, figures, and tables giving experimental procedures and
characterization data. This material is available free of charge via
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interests.
D
dx.doi.org/10.1021/om400582k | Organometallics XXXX, XXX, XXX−XXX