Inorganic Chemistry
Communication
(13) Li, G.; Zhu, C. F.; Xi, X. B.; Cui, Y. Selective binding and removal
of organic molecules in a flexible polymeric material with stretchable
metallosalen chains. Chem. Commun. 2009, 2118−2120.
(14) Shultz, A. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S.
T. Post-Synthesis Modification of a Metal-Organic Framework To Form
Metallosalen-Containing MOF Materials. J. Am. Chem. Soc. 2011, 133,
13252−13255.
(15) Xi, W. Q.; Liu, Y.; Xia, Q. C.; Li, Z. J.; Cui, Y. Direct and Post-
Synthesis Incorporation of Chiral Metallosalen Catalysts into Metal-
Organic Frameworks for Asymmetric Organic Transformations. Chem. -
Eur. J. 2015, 21, 12581−12585.
(16) Gao, W. Y.; Chrzanowski, M.; Ma, S. Q. Metal-metalloporphyrin
frameworks: a resurging class of functional materials. Chem. Soc. Rev.
2014, 43, 5841−5866.
(17) Nakamura, Y.; Aratani, N.; Osuka, A. Cyclic porphyrin arrays as
artificial photosynthetic antenna: Synthesis and excitation energy
transfer. Chem. Soc. Rev. 2007, 36, 831−845.
(18) Bogaerts, T.; Van Yperen-De Deyne, A.; Liu, Y. Y.; Lynen, F.; Van
Speybroeck, V.; Van Der Voort, P. Mn-salen@MIL101(Al): a
heterogeneous, enantioselective catalyst synthesized using a ’bottle
around the ship’ approach. Chem. Commun. 2013, 49, 8021−8023.
(19) Shultz, A. M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. A
Catalytically Active, Permanently Microporous MOF with Metal-
loporphyrin Struts. J. Am. Chem. Soc. 2009, 131, 4204−4205.
(20) Krishna Kumar, R.; Balasubramanian, S.; Goldberg, I. Crystal
engineering with tetraarylporphyrins, an exceptionally versatile building
block for the design of multidimensional supramolecular structures.
Chem. Commun. 1998, 1435−1436.
(21) Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H.
C. Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic
Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angew.
Chem., Int. Ed. 2012, 51, 10307−10310.
(22) Song, F. J.; Wang, C.; Falkowski, J. M.; Ma, L. Q.; Lin, W. B.
Isoreticular Chiral Metal-Organic Frameworks for Asymmetric Alkene
Epoxidation: Tuning Catalytic Activity by Controlling Framework
Catenation and Varying Open Channel Sizes. J. Am. Chem. Soc. 2010,
132, 15390−15398.
(23) Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B. A series of
isoreticular chiral metal-organic frameworks as a tunable platform for
asymmetric catalysis. Nat. Chem. 2010, 2, 838−846.
(24) Kosal, M. E.; Chou, J. H.; Wilson, S. R.; Suslick, K. S. A functional
zeolite analogue assembled from metalloporphyrins. Nat. Mater. 2002,
1, 118−121.
(25) Peng, R.; Li, M.; Li, D. Copper(I) halides: A versatile family in
coordination chemistry and crystal engineering. Coord. Chem. Rev. 2010,
254, 1−18.
(26) Li, M.; Li, Z.; Li, D. Unprecedented cationic copper(I)-iodide
aggregates trapped in ″click″ formation of anionic-tetrazolate-based
coordination polymers. Chem. Commun. 2008, 3390−3392.
(27) Ni, W. X.; Li, M.; Zhou, X. P.; Li, Z.; Huang, X. C.; Li, D. pH-
Induced formation of metalloligand: increasing structure dimensionality
by tuning number of ligand functional sites. Chem. Commun. 2007,
3479−3481.
(32) Zhan, S. Z.; Li, M.; Zhou, X. P.; Ni, J.; Huang, X. C.; Li, D. From
Simple to Complex: Topological Evolution and Luminescence Variation
in a Copper(I) Pyridylpyrazolate System Tuned via Second Ligating
Spacers. Inorg. Chem. 2011, 50, 8879−8892.
(33) Hou, Y. L.; Li, S. X.; Sun, R. W. Y.; Liu, X. Y.; Weng Ng, S.; Li, D.
Facile preparation and dual catalytic activity of copper(I)-metallosalen
coordination polymers. Dalton Trans. 2015, 44, 17360−17365.
(34) Hou, Y. L.; Sun, R. W. Y.; Zhou, X. P.; Wang, J. H.; Li, D. A
copper(I)/copper(II)-salen coordination polymer as a bimetallic
catalyst for three-component Strecker reactions and degradation of
organic dyes. Chem. Commun. 2014, 50, 2295−2297.
(35) Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Toward a
Visible Light Mediated Photocyclization: Cu-Based Sensitizers for the
Synthesis of [5]Helicene. Org. Lett. 2012, 14, 2988−2991.
(36) Bissember, A. C.; Lundgren, R. J.; Creutz, S. E.; Peters, J. C.; Fu,
G. C. Transition-Metal-Catalyzed Alkylations of Amines with Alkyl
Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles.
Angew. Chem., Int. Ed. 2013, 52, 5129−5133.
(37) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Photoinduced
Ullmann C-N Coupling: Demonstrating the Viability of a Radical
Pathway. Science 2012, 338, 647−651.
(38) Wu, Z. L.; Wang, C. H.; Zhao, B.; Dong, J.; Lu, F.; Wang, W. H.;
Wang, W. C.; Wu, G. J.; Cui, J. Z.; Cheng, P. A Semi-Conductive
Copper-Organic Framework with Two Types of Photocatalytic Activity.
Angew. Chem., Int. Ed. 2016, 55, 4938−4942.
(39) Shi, D. Y.; Zheng, R.; Sun, M. J.; Cao, X. R.; Sun, C. X.; Cui, C. J.;
Liu, C. S.; Zhao, J. W.; Du, M. Semiconductive Copper(I)-Organic
Frameworks for Efficient Light-Driven Hydrogen Generation Without
Additional Photosensitizers and Cocatalysts. Angew. Chem., Int. Ed.
2017, 56, 14637−14641.
(40) Zhang, M. J.; Li, H. X.; Li, H. Y.; Lang, J. P. Copper(I) 5-
phenylpyrimidine-2-thiolate complexes showing unique optical proper-
ties and high visible light-directed catalytic performance. Dalton Trans.
2016, 45, 17759−17769.
(41) Chichak, K. S.; Cantrill, S. J.; Pease, A. R.; Chiu, S. H.; Cave, G. W.
V.; Atwood, J. L.; Stoddart, J. F. Molecular Borromean Rings. Science
2004, 304, 1308−1312.
(42) Nitschke, J. R. Construction, substitution, and sorting of metallo-
organic structures via subcomponent self-assembly. Acc. Chem. Res.
2007, 40, 103−112.
(43) Zhou, X. P.; Liu, J.; Zhan, S. Z.; Yang, J. R.; Li, D.; Ng, K. M.; Sun,
R. W. Y.; Che, C. M. A High-Symmetry Coordination Cage from 38- or
62-Component Self-Assembly. J. Am. Chem. Soc. 2012, 134, 8042−8045.
(44) Zhou, X. P.; Wu, Y.; Li, D. Polyhedral Metal-Imidazolate Cages:
Control of Self-Assembly and Cage to Cage Transformation. J. Am.
Chem. Soc. 2013, 135, 16062−16065.
(45) Shiraishi, Y.; Saito, N.; Hirai, T. Adsorption-driven photocatalytic
activity of mesoporous titanium dioxide. J. Am. Chem. Soc. 2005, 127,
12820−12822.
(46) Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous Photocatalytic
Oxidation of Aromatic-Compounds on Tio2. Nature 1981, 293, 206−
208.
(47) Chen, X. F.; Zhang, J. S.; Fu, X. Z.; Antonietti, M.; Wang, X. C. Fe-
g-C3N4-Catalyzed Oxidation of Benzene to Phenol Using Hydrogen
Peroxide and Visible Light. J. Am. Chem. Soc. 2009, 131, 11658−11659.
(48) Conde, A.; Mar Diaz-Requejo, M.; Perez, P. J. Direct, copper-
catalyzed oxidation of aromatic C-H bonds with hydrogen peroxide
under acid-free conditions. Chem. Commun. 2011, 47, 8154−8156.
(49) Ide, Y.; Matsuoka, M.; Ogawa, M. Efficient Visible-Light-Induced
Photocatalytic Activity on Gold-Nanoparticle-Supported Layered
Titanate. J. Am. Chem. Soc. 2010, 132, 16762−16764.
(50) Li, J.; Yang, J.; Liu, Y. Y.; Ma, J. F. Two Heterometallic-Organic
Frameworks Composed of Iron(III)-Salen-Based Ligands and d(10)
Metals: Gas Sorption and Visible-Light Photocatalytic Degradation of 2-
Chlorophenol. Chem. - Eur. J. 2015, 21, 4413−4421.
(28) Zhan, S. Z.; Li, M.; Hou, J. Z.; Ni, J.; Li, D.; Huang, X. C.
Polymerizing Cluster Helicates into High-Connectivity Networks.
Chem. - Eur. J. 2008, 14, 8916−8921.
(29) Zhan, S. Z.; Li, M.; Ng, S. W.; Li, D. Luminescent Metal-Organic
Frameworks (MOFs) as a Chemopalette: Tuning the Thermochromic
Behavior of Dual-Emissive Phosphorescence by Adjusting the Supra-
molecular Microenvironments. Chem. - Eur. J. 2013, 19, 10217−10225.
(30) Hou, J. Z.; Li, M.; Li, Z.; Zhan, S. Z.; Huang, X. C.; Li, D.
Supramolecular helix-to-helix induction: A 3D anionic framework
containing double-helical strands templated by cationic triple-stranded
cluster helicates. Angew. Chem., Int. Ed. 2008, 47, 1711−1714.
(31) Wang, J. H.; Li, M.; Li, D. A dynamic, luminescent and entangled
MOF as a qualitative sensor for volatile organic solvents and a
quantitative monitor for acetonitrile vapour. Chem. Sci. 2013, 4, 1793−
1801.
D
Inorg. Chem. XXXX, XXX, XXX−XXX