DIRECT PHOTOLYSIS OF CHLOROPHENOLS IN AQUEOUS SOLUTIONS
411
solution the maximum decomposition efficiency of
-CP and 2,4-DCP molecules at the lowest expended
6. Sokolova, T.V., Chaikovskaya, O.N., Sosnin, E.A., and
Sokolova, I.V., Zh. Prikl. Spektrosk., 2006, vol. 73,
no. 5, pp. 566–572.
2
dose was achieved with the KrCl excilamp (Fig. 2).
This agrees with the results of photolysis of 4-CP
solutions [25]. Nevertheless, full decomposition of 2-
CP and 2,4-CP anions at pH 11 required smaller UV
radiation doses with the XeBr exсilamp, which was
also observed in photolysis of 4-CP molecules at pH 2
and 5.7.
7. Sokolova, I.V., Chaikovskaya, O.N., Svetlichnyi, V.A.,
et al., Khim. Vysok. Energ., 2002, vol. 36, no. 4,
pp. 307–310.
8. Sul’timova, N.B., Bazyl’, O.K., Sokolova, I.V., et al.,
Opt. Atmosfery Okeana, 2002, vol. 15, no. 3, pp. 258–
2
62.
9
. Chaikovskaya, O.N., Sokolova, I.V., Karetnikova, E.A.,
CONCLUSIONS
et al., Zh. Prikl. Khim., 2009, vol. 82, no. 3, pp. 404–
4
09.
(
1) Under the experimental conditions, the rate of
1
1
1
0. Gomez, M., Murcia, M.D., Gomez, J.L., et al., Chem.
Eng. Process., 2010, vol. 49, pp. 113–119.
direct photolysis of chlorophenols by light of XeBr and
KrCl excilamps increased in the order 2,4-di-
chlorophenol < 2-chlorophenol < 4-chlorophenol for
molecules (pH 2 and 5.4–5.7) and 4-chlorophenol <
,4-dichlorophenol < 2-chlorophenol for anions (pH
1). The maximum photolysis rates were observed
with the XeBr excilamp (282 nm) for 4-chlorophenol
molecules and 2-chlorophenol and 2,4-dichlorophenol
anions.
1. Gomez, M., Matafonova, G., Gomez, J.L., et al.,
J. Hazard. Mater., 2009, vol. 169, pp. 46–51.
2. Lur’e, Yu.Yu., Analiz promyshlennykh stochnykh vod
2
1
(
Analysis of Industrial Wastewater), Moscow: Khimiya,
984.
3. Rayne, S., Forest, K., and Friesen, K.J., Environ. Int.,
009, vol. 35, pp. 425–437.
1
1
1
1
1
1
1
1
2
4. Chu, W., Jafvert, C.T., Diehl, C.A., et al., Environ. Sci.
Technol., 1998, vol. 32, no. 13, pp. 1989–1993.
(
2) The maximum photolysis efficiency of 2-
chlorophenol and 2,4-dichlorophenol molecules with
the smallest absorbed energy dose was achieved with
the KrCl excilamp (222 nm), whereas photolysis of 2-
chlorophenol and 2,4-dichlorophenol required smaller
irradiation doses for the XeBr excilamp (282 nm). The
opposite dependence was observed for 4-chlorophenol
molecules and anions.
5. Wong, C.C. and Chu, W., Chemosphere, 2003, vol. 50,
pp. 981–987.
6. Boule, P., Guyon, C., and Lemaire, J., Chemosphere,
1
982, vol. 11, no. 12, pp. 1179–1188.
7. Shi, Z., Sigman, E.M., Ghosh, M.M., and Dabestani, R.,
Environ. Sci. Technol., 1997, vol. 31, pp. 3581–3587.
8. Czaplicka, M., J. Hazard. Mater., 2006, vol. 134,
pp. 45–59.
ACKNOWLEDGMENTS
9. Boule, P., Guyon, C., and Lemaire, J., Chemosphere,
1
984, vol. 13, pp. 603–612.
The authors are grateful to E.T. Pavlova and
T.A. Kolodin (Chemical Faculty of Baikal State
University) for assistance in HPLC analyses.
20. Eriksson, J., Rahm, S., Green, N., et al., Chemosphere,
2004, vol. 54, pp. 117–126.
2
2
1. Gimeno, O., Carbajo, M., Beltrбn, F.J., and Rivas, F.J.,
J. Hazard. Mater., 2005, vol. B119, pp. 99–108.
REFERENCES
2. Svetlichnyi, V.A., Chaikovskaya, O.N., Bazyl’, O.K.,
et al., High Energy Chem., 2001, vol. 35, no. 4,
pp. 258–264.
1
. Elin, E.S., Fenol’nye soedineniya v biosfere (Phenolic
Compounds in the Biosphere), Novosibirsk: Sib. Otd.
Ross. Akad. Nauk, 2001.
2
3. Matafonova, G., Christofi, N., Batoev, V., and Sosnin, E.,
Chemosphere, 2008, vol. 70, pp. 1124–1127.
2
. Czaplicka, M., Sci. Tot. Environ., 2004, vol. 322,
pp. 21–39.
3
. Pera-Titus, M., Garcнa-Molina, V., Baсos, M.A., et al.,
Appl. Catal., B. Environmental, 2004, vol. 47, pp. 219–
24. Maier, G.V., Artyukhov, V.Ya., Bazyl’, O.K., et al.,
Elektronno-vozbuzhdennye sostoyaniya i fotokhimiya
organicheskikh soedinenii (Electronically Excited States
and Photochemistry of Organic Compounds),
Novosibirsk: Nauka, 1997.
2
56.
4
5
. Sosnin, E.A., Oppenlдnder, T., and Tarasenko, F.V.,
J. Photochem. Photobiol., 2006, vol. 7, pp. 145–163.
. Oppenländer, T., J. Environ. Eng. Sci., 2007, vol. 6,
25. Gomez, M., Murcia, M.D., Christofi, N., et al., Chem.
Eng. J., 2010, vol. 158, pp. 120–128.
pp. 253–264.
RUSSIAN JOURNAL OF APPLIED CHEMISTRY Vol. 84 No. 3 2011