12 of 13
CHANERIKA ET AL.
t-BuOOH and [Ru{pyCH N(R)py}C H ]/H O systems.
Time-dependent studies reveal that over-oxidation is
[20] Z. Shirin, R. Mukherjee, J. F. Richardson, R. M. Buchanan, J.
Chem. Soc. Dalton Trans. 1994, 465.
2
6
6
2 2
[21] T. Kojima, T. Morimoto, T. Sakamoto, S. Miyazaki,
S. Fukuzumi, Chem. – Eur. J. 2008, 14, 8904.
more prominent with t-BuOOH than with H O . Very
2
2
good TONs were achieved with both oxidants, however,
[22] A. Li, J. K. White, K. Arora, M. K. Herroon, P. D. Martin, H.
B. Schlegel, I. Podgorski, C. Turro, J. J. Kodanko, Inorg. Chem.
H O gave higher TONs than t-BuOOH.
2
2
2016, 55, 10.
ACKNOWLEDGMENTS
We are grateful to the University of KwaZulu-Natal, the
Department of Science and Technology - National
Research Foundation Centre of Excellence in Catalysis,
c*change, (PAR 06.2) and the National Research Founda-
tion (Grant no. 111508) for financial assistance. The
authors gratefully acknowledge Dr Michael Nivendran
Pillay and Mr Sizwe Zamisa for x-ray crystallographic
data collection and refinement, and Dr. S. Alapour for a
valuable discussion.
[
[
[
[
24] M. A. Bennett, A. K. Smith, J. Chem. Soc. Dalton Trans.
974, 233.
25] Bruker, APEXII, Bruker AXS Inc., Madison, Wisconsin, USA
009.
1
2
26] Bruker, SAINT, XPREP and SADABS, Bruker AXS Inc., Madi-
son, WI, USA 2009.
27] Bruker, SADABS, Bruker AXS Inc., Madison, WI, USA 2009.
[28] Bruker, SHELXL, XS, XL, XP, XSHELL, Bruker AXS Inc., Mad-
ison, WI, USA 2009.
[
[
[
[
[
29] A. L. Spek, J. Inorg. Crystallogr. 2003, 36, 7.
30] L. J. Barbour, Supramol. Chem. 2001, 1, 189.
ORCID
31] J. L. Atwood, L. J. Barbour, Cryst. Growth des. 2003, 3, 3.
32] POVRAY. Persistence of Vision Raytracer 3.6.
33] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington,
P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van
de Streek, P. A. Wood, J. Appl. Crystallogr. 2008, 41, 466.
REFERENCES
[34] D. Gonzalez Cabrera, B. D. Koivisto, D. A. Leigh, Chem.
Commun. 2007, 4218.
[
1] V. R. Landaeta, R. E. Rodríguez-Lugo, J. Mol. Catal. A: Chem.
017, 426, 316.
[
[
[
35] K.
M. Palaniandavar, Inorg. Chem. 2007, 46, 10294.
36] H. Mishra, A. K. Patra, R. Mukherjee, Inorg. Chim. Acta 2009,
62, 483.
37] E. R. Milaeva, D. B. Shpakovsky, Y. A. Gracheva, S. I. Orlova,
V. V. Maduar, B. N. Tarasevich, N. N. Meleshonkova, L.
G. Dubova, E. F. Shevtsova, Dalton Trans. 2013, 42, 6817.
Visvaganesan,
R.
Mayilmurugan,
E.
Suresh,
2
[
2] K. Liao, S. Negretti, D. G. Musaev, J. Bacsa, H. M. Davies,
Nature 2016, 533, 230.
3
[
[
[
[
[
3] M. S. Chen, M. C. White, Science 2010, 327, 566.
4] X. Tang, X. Jia, Z. Huang, Chem. Sci. 2018, 9, 288.
5] M. T. Whited, R. H. Grubbs, Acc. Chem. Res. 2009, 42, 1607.
6] J. T. Singleton, Tetrahedron 2003, 59, 1837.
7] W. Baratta, G. Chelucci, E. Herdtweck, S. Magnolia, K. Siega,
P. Rigo, Angew. Chem. Int. Ed. 2007, 46, 7651.
[
[
[
38] D. Gallego, S. Inoue, B. Blom, M. Driess, Organometallics
2
014, 33, 6885.
39] D. Kim, S. Kim, E. Kim, H. J. Lee, H. Lee, Polyhedron 2013,
3, 139.
40] Q. Major, A. J. Lough, D. G. Gusev, Organometallics 2005, 24,
492.
[
[
8] F. Hana, A. J. Lough, G. G. Lavoie, Dalton Trans. 2017, 46,
6
1
6228.
9] Z. Chval, O. Dvořá cˇ ková, D. Chvalová, J. V. Burda, Inorg.
Chem. 2019, 58, 3616.
2
[
[
41] G. M. Adams, A. S. Weller, Coord. Chem. Rev. 2018, 355, 150.
42] P. Pattanayak, D. Patra, P. Brand ~a o, D. Mal, V. Felix, Inorg.
Chem. Commun. 2015, 53, 68.
[10] F. Zeng, Z. Yu, Organometallics 2008, 27, 2898.
[11] C. Gunanathan, D. Milstein, Chem. Rev. 2014, 114, 12024.
[12] F. Zeng, Z. Yu, Organometallics 2009, 28, 1855.
[13] S. K. Sarkar, M. S. Jana, T. K. Mondal, C. Sinha, Appl.
Organomet. Chem. 2014, 28, 641.
[
43] C. Xu, X. C. Liu, X. D. Jin, Q. Yang, G. C. Han, Y. C. Gang, H.
H. Hu, J. Coord. Chem. 2014, 67, 352.
[
[
44] M. Urši cˇ , T. Lipec, A. Meden, I. Turel, Molecules 2017, 22, 326.
45] J. M. Gichumbi, H. B. Friedrich, B. Omondi, J. Mol. Catal. A:
Chem. 2016, 416, 29.
[
[
[
[
[
14] E. A. Nyawade, H. B. Friedrich, B. Omondi, P. Mpungose,
Organometallics 2015, 34, 4922.
15] J. M. Gichumbi, H. B. Friedrich, B. Omondi, Transit. Metal
Chem. 2016, 41, 867.
[
[
46] S.-Q. Bai, L. L. Koh, T. S. A. Hor, Inorg. Chem. 2009, 48, 1207.
47] M. Blomenkemper, H. Schröder, T. Pape, F. E. Hahn, Inorg.
Chim. Acta 2012, 390, 143.
16] T. Kojima, T. Sakamoto, Y. Matsuda, Inorg. Chem. 2004, 43,
2
243.
[
48] R. J. Ball, A. R. J. Genge, A. L. Radford, B. W. Skelton, V.-
17] J. H. Wallenstein, J. Sundberg, C. J. McKenzie,
M. Abrahamsson, Eur. J. Inorg. Chem. 2016, 2016, 897.
18] J. Bjernemose, A. Hazell, C. J. McKenzie, M. F. Mahon, L.
P. Nielsen, P. R. Raithby, O. Simonsen, H. Toftlund, J.
A. Wolny, Polyhedron 2003, 22, 875.
A. Tolhurst, A. H. White, J. Chem. Soc. Dalton Trans. 2001,
2807.
[
[
49] J. F. Hartwig, M. A. Larsen, ACS Cent. Sci. 2016, 2, 281.
50] T. A. Fernandes, V. André, A. M. Kirillov, M. V. Kirillova, J.
Mol. Catal. A: Chem. 2017, 426, 357.
[
19] F. Weisser, S. Plebst, S. Hohloch, M. van der Meer, S. Manck,
F. Führer, V. Radtke, D. Leichnitz, B. Sarkar, Inorg. Chem.
[51] T. A. Fernandes, C. I. M. Santos, V. André, J. Kłak, M.
V. Kirillova, A. M. Kirillov, Inorg. Chem. 2016, 55, 125.
2
015, 54, 4621.