Kirsten et al.
SCHEME 1. Urea-Catalyzed Claisen Rearrangement and
Bis(hydrogen) Bonded Transition State Model According to
Curran
The polarization of the transition state of the thermal aliphatic
Claisen rearrangement in general has been confirmed by many
computational studies at different levels of theory.12 However,
no detailed computational investigation to support the predicted
transition state stabilization in the presence of a bis(hydrogen)
bonded urea is currently available.13
It was shown before and particularly after the important work
of Curran that a variety of different reactions may be catalyzed
(4) (a) Etter, M. C.; Panunto, T. W. J. Am. Chem. Soc. 1988, 110, 5896-
5897. (b) Wilcox, C. S.; Kim, E.-i.; Romano, D.; Kuo, L. H.; Burt, A. L.;
Curran, D. P. Tetrahedron 1995, 51, 621-634. (c) Chien, C.-H.; Leung,
M.-k.; Su, J.-K.; Li, G.-H.; Liu, Y.-H.; Wang, Y. J. Org. Chem. 2004, 69,
1866-1871.
(5) Aromatic Claisen rearrangement, see: (a) White, W. N.; Gwynn, D.;
Schlitt, R.; Girard, C.; Fife, W. J. Am. Chem. Soc. 1958, 80, 3271-3277.
(b) Goering, L.; Jacobson, R. R. J. Am. Chem. Soc. 1958, 80, 3277-3285.
(c) White, W. N.; Wolfarth, E. F. J. Org. Chem. 1970, 35, 2196-2199. (d)
White, W. N.; Wolfarth, E. F. J. Org. Chem. 1970, 35, 3585-3585. (e)
Bagnell, L.; Cablewski, T.; Strauss, C. R.; Trainor, R. W. J. Org. Chem.
1996, 61, 7355-7359. Aliphatic Claisen rearrangement, see: (f) Ponaras,
A. A. J. Org. Chem. 1983, 48, 3866-3868. (g) Wilcox, C. S.; Babston, R.
E. J. Am. Chem. Soc. 1986, 108, 6636-6642. (h) Coates, R. M.; Rogers,
B. D.; Hobbs, S. J.; Curran, D. P.; Peck, D. R. J. Am. Chem. Soc. 1987,
109, 1160-1170. (i) Gajewski, J. J.; Jurayj, J.; Kimbrough, D. R.; Gande,
M. E.; Ganem, B.; Carpenter, B. K. J. Am. Chem. Soc. 1987, 109, 1170-
1186. (j) Brandes, E.; Grieco, P. A.; Gajewski, J. J. J. Org. Chem. 1989,
54, 515-516. (k) Grieco, P. A.; Brandes, E. B.; McCann, S.; Clark, J. D.
J. Org. Chem. 1989, 54, 5849-5851. (l) Robertson, J.; Fowler, T. G. Org.
Biomol. Chem. 2006, 4, 4307-4318.
(6) (a) Claisen, L. Chem. Ber. 1912, 45, 3157-3167. (b) Lauer, W. M.;
Kilburn, E. I. J. Am. Chem. Soc. 1937, 59, 2586-2588. (c) Kincaid, J. F.;
Tarbell, D. S. J. Am. Chem. Soc. 1939, 61, 3085-3089. (d) Ralls, J. W.;
Lundin, R. E.; Bailey, G. F. J. Org. Chem. 1963, 28, 3521-3526. (e)
Svanholm, U.; Parker V. D. J. Chem. Soc., Chem. Commun. 1972, 645-
646. (f) Widmer, U.; Hansen, H.-J.; Schmidt, H. HelV. Chim. Acta 1973,
56, 2644-2648. (g) Svanholm, U.; Parker, V. D. J. Chem. Soc., Perkin
Trans. 2 1974, 169-173. (h) Mikami, K.; Takahashi, K.; Nakai, T.
Tetrahedron Lett. 1987, 28, 5879-5882. (i) Mikami, K.; Takahashi, K.;
Nakai, T. J. Am. Chem. Soc. 1990, 112, 4035-4037. (j) Paquette, L. A.;
Moradei, O. M.; Bernardelli, P.; Lange T. Org. Lett. 2000, 2, 1875-1878.
(k) Roe, J. M.; Webster, R. A. B.; Ganesan, A. Org. Lett. 2003, 5, 2825-
2827. (l) Nakabayashi, K.; Ooho, M.; Niino, T.; Kitamura, T.; Yamaji, T.
Bull. Chem. Soc. Jpn. 2004, 77, 157-164.
(7) (a) Severance, D. L.; Jorgensen, W. L. J. Am. Chem. Soc. 1992, 114,
10966-10968. (b) Cramer, C. J.; Truhlar, D. G. J. Am. Chem. Soc. 1992,
114, 8794-8799. (c) Jorgensen, W. L.; Blake, J. F.; Lim, D.; Severance,
D. L. J. Chem. Soc., Faraday Trans. 1994, 90, 1727-1732. See also: (d)
Davidson, M. M.; Hillier, I. H. J. Phys. Chem. 1995, 99, 6748-6751.
(8) For computational studies on solvent rate effects, see: (a) Gao, J. J.
Am. Chem. Soc. 1994, 116, 1563-1564. (b) Davidson, M. M.; Hillier, I.
H.; Hall, R. J.; Burton N. A. J. Am. Chem. Soc. 1994, 116, 9294-9297. (c)
Sehgal, A.; Shao, L.; Gao, J. J. Am. Chem. Soc. 1995, 117, 11337-11340.
(d) Hu, H.; Kobrak, M. N.; Xu, C.; Hammes-Schiffer, S. J. Phys. Chem. A
2000, 104, 8058-8066.
(9) For an insightful review on solvent rate effects, see: Gajewski, J. J.
Acc. Chem. Res. 1997, 30, 219-225.
(10) Curran, D. P.; Lung, H. K. Tetrahedron Lett. 1995, 36, 6647-6650.
For the influence of diarylureas on the rate and the stereochemical course
of a radical allylation, see: Curran, D. P.; Kuo, L. H. J. Org. Chem. 1994,
59, 3259-3261.
with Jorgensen’s suggestion, Curran proposed a bis(hydrogen)
bonded transition state model based on a specific interaction
between the urea 2a and the partially negatively charged ether
oxygen atom of the allyl vinyl ether 1 to explain the rate
acceleration (Scheme 1).
(2) For hydrogen bond donors other than (thio)ureas, see: (a) Hine, J.;
Linden, S. M.; Kanagasabapathy, V. M. J. Am. Chem. Soc. 1985, 107,
1082-1083. (b) Hine, J.; Linden, S. M.; Kanagasabapathy, V. M. J. Org.
Chem. 1985, 50, 5096-5099. (c) Kelly, T. R.; Meghani, P.; Ekkundi, V.
S. Tetrahedron Lett. 1990, 31, 3381-3384. (d) Raposo, C.; Almaraz, M.;
Crego, M.; Mussons, M. L.; Pe´rez, N.; Caballero, M. C.; Mora´n, J.
Tetrahedron Lett. 1994, 35, 7065-7068. (e) Iyer, M. S.; Gigstad, K. M.;
Namdev, N. D.; Lipton, M. J. Am. Chem. Soc. 1996, 118, 4910-4911. (f)
Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157-160. (g) Schuster, T.;
Kurz, M.; Go¨bel, M. W. J. Org. Chem. 2000, 65, 1697-1701. (h) Schuster,
T.; Bauch, M.; Du¨rner, G.; Go¨bel, M. W. Org. Lett. 2000, 2, 179-181. (i)
Rowe, H. L.; Spencer, N.; Philp, D. Tetrahedron Lett. 2000, 41, 4475-
4479. (j) Huang, Y.; Rawal, V. H. J. Am. Chem. Soc. 2002, 124, 9662-
9663. (k) Du¨rner, S. B. G.; Bolte, M.; Go¨bel, M. W. Eur. J. Org. Chem.
2003, 1661-1664. (l) Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Synlett
2003, 1121-1124. (m) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal V.
H. Nature 2003, 424, 146. (n) McDougal, N. T.; Schaus, S. E. J. Am. Chem.
Soc. 2003, 125, 12094-12095. (o) Huang, J.; Corey, E. J. Org. Lett. 2004,
6, 5027-5029. (p) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc.
2004, 126, 9906-9907. (q) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem.
Commun. 2005, 4481-4483. (r) Gondi, V. B.; Gravel, M.; Rawal, V. H.
Org. Lett. 2005, 7, 5657-5660. (s) Rajaram, S.; Sigman, M. S. Org. Lett.
2005, 7, 5473-5475. (t) Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J.
Am. Chem. Soc. 2005, 127, 11256-11257. (su) Unni, A. K.; Takenaka,
N.; Yamamoto, H.; Rawal, V. H. J. Am. Chem. Soc. 2005, 127, 1336-
1337. (v) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128,
9626-9627. (w) Hansen, H. M.; Longbottom, D. A.; Ley, S. V. Chem.
Commun. 2006, 4838-4840.
(3) For Brønsted acid catalysis by chiral phosphoric acids, see: (a)
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. 2004, 116,
1592-1594. (b) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126,
5356-5357. (c) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 11804-11805. (d) Akiyama, T.; Morita, H.; Itoh, J.;
Fuchibe, K. Org. Lett. 2005, 7, 2583-2585. (e) Rueping, M.; Sugiono, E.;
Azap, C.; Theissmann, T.; Bolte, M. Org. Lett. 2005, 7, 3781-3783. (f)
Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc. 2005, 127,
9360-9361. (g) Rowland, G. B.; Zhang, H.; Rowland, E. B.; Chennama-
dhavuni, S.; Wang, Y.; Antilla J. C. J. Am. Chem. Soc. 2005, 127, 15696-
15697. (h) Hoffmann, S.; Seayad, A. M.; List, B. Angew. Chem., Int. Ed.
2005, 44, 7424-7427. (i) Terada, M.; Machioka, K.; Sorimachi, K. Angew.
Chem., Int. Ed. 2006, 45, 2254-2257. (j) Rueping, M.; Antonchick, A. P.;
Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683-3686. (k) Itoh, J.;
Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2006, 45, 4796-4798.
(l) Seayad, J.; Seayad, A. M.; List, B. J. Am. Chem. Soc. 2006, 128, 1086-
1087. (m) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006,
128, 13070-13071. (n) Hoffmann, S.; Nicoletti, M.; List, B. J. Am. Chem.
Soc. 2006, 128, 13074-13075. (o) Martin, N. J. A.; List, B. J. Am. Chem.
Soc. 2006, 128, 13368-13369.
(11) The presence of the 6-methoxy group causes a slightly increased
reactivity under thermal conditions (k ) 0.612 × 10-5 s-1 in benzene-d6 at
80 °C) compared to the unsubstituted allyl vinyl ether (k ) 0.0711 × 10-5
s-1 in benzene-d6 at 80 °C).
(12) (a) Yoo, H. Y.; Houk, K. N. J. Am. Chem. Soc. 1994, 116, 12047-
12048. (b) Wiest, O.; Houk, K. N. J. Am. Chem. Soc. 1995, 117, 11628-
11639. (c) Aviyente, V.; Yoo, H. Y.; Houk, K. N. J. Org. Chem. 1997, 62,
6121-6128. (d) Yoo, H. Y.; Houk, K. N. J. Am. Chem. Soc. 1997, 119,
2877-2884. (e) Meyer, M. P.; DelMonte, A. J.; Singleton, D. A. J. Am.
Chem. Soc. 1999, 121, 10865-10874. (f) Khanjin, N. A.; Snyder, J. P.;
Menger, F. M. J. Am. Chem. Soc. 1999, 121, 11831-11846. (g) Aviyente,
V.; Houk, K. N. J. Phys. Chem. A 2001, 105, 383-391. (h) Ozturk, C.;
Aviyente, V.; Houk, K. N. J. Org. Chem. 2005, 70, 7028-7034.
(13) For recent computational studies on thiourea-catalyzed reactions,
see: (a) Hamza, A.; Schubert, G.; Soos, T.; Papai, I. J. Am. Chem. Soc.
2006, 40, 13151-13160. (b) Zhu, Y.; Drueckhammer, D. G. J. Org. Chem.
2005, 70, 7755-7760.
4002 J. Org. Chem., Vol. 72, No. 11, 2007