148
C. A. M. Abella et al. / Tetrahedron Letters 49 (2008) 145–148
Santos, L. S.; da Silveira Neto, B. A.; Consorti, C. S.;
Pavam, C. H.; Almeida, W. P.; Coelho, F.; Eberlin, M. N.;
Dupont, J. J. Phys. Org. Chem. 2006, 19, 731–735.
250 MHz): d 7.35–7.15 (m. 4H aromatics), 4.99 (d,
J = 4.2 Hz, 1H), 4.48 (d, J = 4.2 Hz, 1H), 3.71 (s, 3H),
1
3
2.77 (br s, 2H, exchangeable with D O). C NMR
2
4
. For some recent examples concerning the utilization of
Morita–Baylis–Hillman adduct as substrate for the syn-
thesis of natural products and drugs, see: (a) Mateus, C.
pdf; (b) Porto, R. S.; Coelho, F. Synth. Commun. 2004, 34,
(CDCl
3
, 300 MHz): d 172.1, 140.6, 134.3, 129.5, 128.3,
126.6, 124.5, 74.6, 74.4, 52.6. HRMS (ESI) calcd for
C H12ClO [M+H] 231.0424; found 231.0398.
10 4
+
12. For some recent examples which demonstrate the syn-
thetic versatility of a-ketoesters, see: (a) Wieland, L. C.;
Deng, H. B.; Snapper, M. C.; Hoveyda, A. H. J. Am.
Chem. Soc. 2005, 127, 15435–15456; (b) DiMauro, E. F.;
Kozlowski, M. C. Org. Lett. 2002, 4, 3781–3784; (c)
DiMauro, E. F.; Kozlowski, M. C. J. Am. Chem. Soc.
2002, 124, 12668–12669; (d) Christensen, C.; Juhl, K.;
Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67,
4875–4881; (e) Christensen, C.; Juhl, K.; Jørgensen, K. A.
Chem. Commun. 2001, 2222–2223; (f) Jiang, B.; Chen, Z.
L.; Tang, X. X. Org. Lett. 2002, 4, 3451–3453; (g) Du, D.
M.; Lu, S. F.; Fang, T.; Xu, J. X. J. Org. Chem. 2005, 70,
3712–3715; (h) Li, H.; Wang, B. M.; Deng, L. J. Am.
Chem. Soc. 2006, 128, 732–733.
3037–3046; (c) Feltrin, M. A.; Almeida, W. P. Synth.
Commun. 2003, 33, 1141–1146; (d) Mateus, C. R.; Feltrin,
M. P.; Costa, A. M.; Coelho, F.; Almeida, W. P.
Tetrahedron 2001, 57, 6901–6908; (e) Iwabuchi, Y.;
Furukawa, M.; Esumi, T.; Hatakeyama, S. Chem. Com-
mun. 2001, 2030–2031; (f) Iwabuchi, Y.; Sugihara, T.;
Esumi, T.; Hatakeyama, S. Tetrahedron Lett. 2001, 42,
7
867–7871; (g) Masunari, A.; Trazzi, G.; Ishida, E.;
Coelho, F.; Almeida, W. P. Synth. Commun. 2001, 31,
100–2109; (h) Ameer, F.; Drewes, S. E.; Houston-
McMillan, M. S.; Kaye, P. T. S. Afr. J. Chem. 1986, 39,
2
5
7–63; (i) Hofmann, H. M. R.; Rabe, J. Helv. Chim. Acta
13. (a) Hanessian, S. In Total Syntheis of Natural Products:
The Chiron Approach; Pergamon Press: New York, 1983;
(b) Cossy, J.; Bouzbouz, S.; Pradaux, F.; Willis, C.;
Belloste, V. Synlett 2002, 1595–1606; (c) Solladi e´ , G.
Heteroat. Chem. 2002, 13, 443–452.
14. (a) Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41,
2024–2032; (b) Kolb, H. C.; VanNieuwenhze, M. S.;
Sharpless, K. B. Chem. Rev. 1994, 94, 2483–2547; (c)
Wang, L.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114,
7568–7570; For an example of alternative functionaliza-
tion of olefins in the preparation of 1,2-diols, see: (d)
Sakurada, I.; Yamasaki, S.; Kanai, M.; Shibasaki, M.
Tetrahedron Lett. 2000, 41, 2415–2418.
1984, 67, 413–415; (j) Hofmann, H. M. R.; Rabe, J. J. Org.
Chem. 1985, 50, 3849–3859.
5
. Cassanta, R. R. Master Thesis, Organic Chemistry
Department, Chemistry Institute, Unicamp, 2001.
. (a) Costa, P. R. R.; Pinheiro, S.; Lopes, C. C. Tetrahedron
Lett. 1985, 26, 4155–4158; (b) Yoshida, Y.; Ichikawa, S.;
Shinozuka, Y.; Satoh, M.; Mohri, K.; Isobe, K. Hetero-
cycles 2005, 65, 1481–1490; (c) Woodward, R. B.; Cava,
M. P.; Ollis, W. D.; Hunger, A.; Daeniker, H. U.;
Schenker, K. J. Am. Chem. Soc. 1954, 76, 4749–4751; (d)
Prelog, V.; Battergay, J.; Taylor, W. I. Helv. Chim. Acta
6
1948, 31, 2244–2246.
7
8
9
. Coelho, F.; Veronese, D.; Lopes, E. C. S.; Rossi, R. C.
Tetrahedron Lett. 2003, 44, 5731–5735.
15. (a) Liao, M.; Yao, W.; Wang, J. Synthesis 2004, 2633–
2636, and reference cited therein; (b) Denis, J.-N.; Correa,
A.; Greene, A. E. J. Org. Chem. 1990, 55, 1957–1959; (c)
Dixon, D. J.; Ley, S. V.; Polarc, A.; Sheppard, T. Org.
Lett. 2001, 3, 3749–3752; (d) Adam, W.; Zhang, A. Eur. J.
Org. Chem. 2004, 147–1252; (e) Choudary, B. M.; Chow-
dari, N. S.; Jyothi, K.; Kantam, M. L. J. Am. Chem. Soc.
2002, 124, 5341–5349; (f) Matthews, B. R.; Jackson, W.
R.; Jacobs, H. A.; Watson, K. G. Aus. J. Chem. 1990, 43,
1195–1214.
. Frezza, M.; Soul e` re, L.; Queneau, Y.; Doutheau, A.
Tetrahedron Lett. 2005, 46, 6495–6498.
. (a) Wasserman, H. H.; Shiraishi, M.; Coats, S. J.; Cook, J.
D. Tetrahedron Lett. 1995, 36, 6785–6788; (b) Wasserman,
H. H.; Baldino, C. M. Bioorg. Med. Chem. Lett. 1995, 5,
3033–3038; (c) Wasserman, H. H. U.S. Patent 6,369,194,
April 09, 2002; Chem. Abstr. 2002, 136, 294349.
1
1
0. (a) Coelho, F.; Almeida, W. P.; Veronese, D.; Mateus, C.
R.; Lopes, E. C. S.; Silveira, G. P. C.; Rossi, R. C.; Pavam,
C. H. Tetrahedron 2002, 58, 7437–7447; (b) Almeida, W.
P.; Coelho, F. Tetrahedron Lett. 1998, 39, 8609–8612.
16. Acocella, M. R.; Manche n˜ o, O. G.; Bella, M.; Jørgensen,
K. A. J. Org. Chem. 2004, 69, 8165–8167, and references
cited therein.
1. Spectroscopic data of some representative examples of
17. For some representative and recent examples of the
preparation of a,b-diols esters using aldol strategy, see:
(a) Yoshikawa, N.; Suzuki, T.; Shibasaki, M. J. Org.
Chem. 2002, 67, 2556–2565, and references cited therein;
(b) Kumagai, N.; Matsunaga, S.; Yoshihawa, T.; Ohshi-
ma, T.; Shibasaki, M. Org. Lett. 2001, 3, 1539–1542, and
references cited therein; (c) Kobayashi, S.; Kawasuji, T.
Tetrahedron Lett. 1994, 35, 3329–3332.
18. For a recent review on reduction of C@N compounds with
hydride reagents, see: Hutchins, R. O.; Hutchins, M. K.
Reduction of C@N to CHNH by metal hydrides. In
Comprehensive Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: New York, 1991; Vol. 8.
19. Zhao, Y.; Jiang, N.; Chen, S.; Peng, C.; Zhang, X.; Zou,
Y.; Zhang, S.; Wang, J. Tetrahedron 2005, 61, 6546–6552.
20. Lane, C. F. Synthesis 1975, 135–146.
1
unprotected a-ketoesters: (28)
H
NMR (CDCl3,
300 MHz): d 7.01 (s, 1H), 6.82 (s, 1H), 6.02 (s, 1H), 5.99
(
1
s, 2H), 3.82 (s, 3H), 2.3 (br s, exchangeable with D O,
2
13
H); C NMR (CDCl , 75.4 MHz): d 192.7, 163.0, 148.3,
3
1
48, 121.3, 116.2, 113.2, 108.3, 101.2, 77.5, 52.5. HRMS
+
(
ESI) calcd for C11
H
10BrO
6
[M+H] 316.9661; found
1
316.9652; (30) H NMR (CDCl
3
, 300 MHz): d 7.55–7.20
1
3
(
(
1
m, 4H aromatic), 5.82 (s, 1H), 3.85 (s, 3H); C NMR
CDCl , 125 MHz): d 191.7, 162.9, 140.1, 134.1, 129.5,
28.2, 126.5, 124.5, 76.2, 52.6. HRMS (ESI) calcd for
3
+
C H ClO [M+H] 229.0268; found 229.0233. Spectro-
10
scopic data for some representative anti diols (unknown
10
4
1
compounds): (36) H NMR (CDCl
3
, 250 MHz): d 7.03 (s,
H aromatic), 6.98 (s, 1H aromatic), 5.28 (d, J = 3.9 Hz,
H), 4.54 (d, J = 3.9 Hz, 1H), 3.70 (s, 3H), 2.06 (br s,
1
1
1
3
exchangeable with D
2
O). C NMR (CDCl
3
, 62.5 MHz): d
21. The relative stereochemistries of diols 24, 35, and 37 were
determined by comparison with data available in the
literature. The corresponding 1,2-ketals of diols 36 and 38
were used for stereochemical determinations.
1
7
3
72.4, 147.9, 147.5, 131.4, 112.6, 112.4, 108.1, 101.8, 74,
+
3.4, 58.4. HRMS (EI, 70 eV) calcd for C11
6
H11BrO [M]
1
17.9739; found 317.9723; (38)
H NMR (CDCl3,