6
476 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 20
Yang et al.
potential with significant safety margin for undesired cardio-
vascular effects.
(11) Dogrul, A.; Gardell, L. R.; Ossipov, M. H.; Tulunay, F. C.; Lai, J.;
Porreca, F. Reversal of experimental neuropathic pain by T-type
calcium channel blockers. Pain 2003, 105, 159–169.
2
+
(
(
(
12) Altiers, C.; Zamponi, G. W. Targeting Ca channels to treat pain:
T-type versus N-type. Trends Pharmacol. Sci. 2004, 25, 465–470.
13) Flatters, S. J. L. T-Type calcium channels: a potent target for treatment
of chronic pain. Drugs Future 2005, 30, 573–580.
Conclusion
Truly selective T-type calcium channel antagonists are po-
tential therapeutic agents for treatment of a variety of neurologi-
cal disorders. We identified a potent and highly selective T-type
blocker (30) starting from HTS 1,4-substituted piperidine leads.
We found that introducing 3-S F onto the piperidine ring
increased potency on T-type channels, as well as decreasing
activity on L-type and hERG channels. Compound 30 displays
good pharmacokinetics in three preclinical species. Robust
efficacy was seen in WAG/Rij rat absence epilepsy and
harmaline-induced tremor models at plasma exposure well below
the no effect level in CV dog experiments. In addition,
compound 30 demonstrates a significant reversal of haloperidol
induced catalepsy in a preclinical model of Parkinson’s disease.
These data suggest that 30 has a good margin between on- and
off-target effects. Therefore, selective T-type calcium channel
antagonists such as 30 hold promise for the treatment of a variety
of neurological disorders without adverse cardiovascular side
effects.
14) McGivern, J. G. Targeting N-type and T-type calcium channels for
the treatment of pain. Drug DiscoVery Today 2006, 11, 245–253.
(15) Todorovic, S. M.; Jevtovic-Todorovic, V. The role of T-type calcium
channels in peripheral and central pain processing. CNS Neurol.
Disord.: Drug Targets 2006, 5, 639–653.
(
(
(
(
(
16) Llin a´ s, R. R.; Ribary, U.; Jeanmonod, D.; Kronberg, E.; Mitra, P. P.
Thalamocortical dysrhythmia: a neurological and neuropsychiatric
syndrome characterized by magnetoencephalography. Proc. Natl. Acad.
Sci. U.S.A. 1999, 96, 15222–15227.
17) Shen, H.; Zhang, B.; Shin, J.-H.; Lei, D.; Du, Y.; Gao, X.; Wang, Q.;
Ohlemiller, K. K.; Piccirillo, J.; Bao, J. Prophylactic and therapeutic
functions of T-type calcium blockers against noise-induced hearing
loss. Hearing Res. 2007, 226, 52–60.
18) Lee, J.; Kim, D.; Shin, H.-S. Lack of delta waves and sleep
disturbances during non-rapid eye movement sleep in mice lacking
R1G-subunit of T-type calcium channels. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 18195–18199.
19) Sui, G.-P.; Wu, C.; Severs, N.; Newgreen, D.; Fry, C. H. The
2
+
association between T-type Ca current and outward current in
isolated human detrusor cells from stable and overactive bladders. BJU
Int. 2007, 99, 436–441.
20) Gray, L. S.; Perez-Reyes, E.; Gamorra, J. C.; Haverstick, D. M.;
Acknowledgment. We thank Carl F. Homnick, David D.
Wisnoski, Wei Lemaire, Scott D. Mosser, Rodney A. Bednar,
Charles W. Ross, III, Joan S. Murphy, Kevin B. Albertson,
William H. Leister, Ray T. McClain, Anna Dudkina, Emily
Wang, Debra McLoughlin, and Dorothy Levorse for technical
support of this work.
Shattock, M.; McLatchie, L.; Harper, J.; Brooks, G.; Heady, T.;
2
+
Macdonald, T. L. The role of voltage gated T-type Ca channel
2
+
isoforms in mediating “capacitative” Ca entry in cancer cells. Cell
Calcium 2004, 36, 489–497.
(
21) Contreras, D. The role of T-channels in the generation of thalamo-
cortical rhythms. CNS Neurol. Disord.: Drug Targets 2006, 5, 571–
5
85.
(
22) McCormick, D. A. Are thalamocortical rhythms the rosetta stone of
a subset of neurological disorders? Nat. Med. 1999, 5, 1349–1351.
23) Gomora, J. C.; DauD, A. N.; Weiergraber, M.; Perez-Reyes, E. Block
of cloned human T-type calcium channels by succinimide antiepileptic
drugs. Mol. Pharmacol. 2001, 60, 1121–1132.
Supporting Information Available: Experimental procedures
and analytical data for the synthesis of compounds 6, 8-14, 17,
(
1
9-21, 23, 25, 30, 32; FLIPR assay protocol; assay protocol for
voltage-clamp assay; pharmacokinetic experiment procedure; dog
renal function assay protocol; and anesthetized CV dog data. This
material is available free of charge via the Internet at http://
pubs.acs.org.
(
24) Broicher, T.; Seidenbecher, T.; Meuth, P.; Munsch, T.; Meuth, S. G.;
Kanyshkova, T.; Pape, H.-C.; Budde, T. T-Current related effects of
2
+
antiepileptic drugs and a Ca channel antagonist on thalamic relay
and local circuit interneurons in a rat model of absence epilepsy.
Neuropharmacology 2007, 53, 431–446.
(
25) Lory, P.; Chemin, J. Towards the discovery of novel T-type calcium
References
channel blockers. Expert Opin. Ther. Targets 2007, 11, 717–722.
(
1) Ertel, E. A.; Campbell, K. P.; Harpold, M. M.; Hofmann, F.; Mori,
Y.; Perez-Reyes, E.; Schwartz, A.; Snutch, T. P.; Tanabe, T.;
Birnbaumer, L.; Tsien, R. W.; Catterall, W. A. Nomenclature of
voltage-gated calcium channels. Neuron 2000, 25, 533–535.
(26) (a) Kumar, P. P.; Stotz, S. C.; Paramashivappa, R.; Beedle, A. M.;
Zamponi, G. W.; Rao, A. S. Synthesis and evaluation of a new class
of nifedipine analogs with T-type calcium channel blocking activity.
Mol. Pharmacol. 2002, 61, 649–658. (b) Jung, H. K.; Doddareddy,
M. R.; Cha, J. H.; Rhim, H.; Cho, Y. S.; Koh, H. Y.; Jung, B. Y.;
2
+
(
2) (a) Catterall, W. A. Structure and regulation of voltage-gated Ca
2
+
channels. Annu. ReV. Cell DeV. Biol. 2000, 16, 521–555. (b) Lacinova,
L. Pharmacology of recombinant low-voltage activated calcium
channels. Curr. Drug Targets: CNS Neurol. Disord. 2004, 3, 105–
Pae, A. N. Synthesis and biological evaluation of novel T-type Ca
channel blockers. Bioorg. Med. Chem. 2004, 12, 3965–3970. (c)
McCalmont, W. F.; Heady, T. N.; Patterson, J. R.; Lindenmuth, M. A.;
Haverstick, D. M.; Gray, L. S.; Macdonald, T. L. Design, synthesis,
and biological evaluation of novel T-type calcium channel antagonists.
Bioorg. Med. Chem. Lett. 2004, 14, 3691–3695. (d) Ku, I. W.; Cho,
S.; Doddareddy, M. R.; Jang, M. S.; Keum, G.; Lee, J.-H.; Chung,
B. Y.; Kim, Y.; Rhim, H.; Kang, S. B. Morpholin-2-one derivatives
1
11.
(
3) Leuranguer, V.; Mangoni, M. E.; Nargeot, R. S. Inhibition of T-type
and L-type calcium channels by mibefradil: physiologic and pharma-
cologic bases of cardiovascular effects. J. CardioVasc. Pharmacol.
2
001, 37, 649–661.
2+
(
4) Mehrke, G.; Zong, X. G.; Flockerzi, V.; Hofmann, F. The Ca(++)-
channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++
channels. J. Pharmacol. Exp. Ther. 1994, 271, 1483–1488.
as novel selective T-type Ca channel blockers. Bioorg. Med. Chem.
Lett. 2006, 16, 5244–5248. (e) Jo, M. N.; Seo, H. J.; Kim, Y.; Seo,
S. H.; Rhim, H.; Cho, Y. S.; Cha, J. H.; Koh, H. Y.; Choo, H.; Pae,
A. N. Novel T-type calcium channel blockers: dioxoquinazoline
carboxamide derivatives. Bioorg. Med. Chem. 2007, 15, 365–373. (f)
Doddareddy, M. R.; Choo, H.; Cho, Y. S.; Rhim, H.; Koh, H. Y.;
Lee, J.-H.; Jeong, S.-W.; Pae, A. N. 3D pharmacophore based virtual
screening of T-type calcium channel blockers. Bioorg. Med. Chem.
2005, 15, 1091–1105. (g) Park, J. H.; Choi, J. K.; Lee, E.; Rhim, H.;
Seo, S. H.; Kim, Y.; Doddareddy, M. R.; Pae, A. N.; Kang, J.; Roh,
E. J. Lead discovery and optimization of T-type calcium channel
blockers. Bioorg. Med. Chem. 2007, 15, 1409–1419. (h) Seo, H. N.;
Choi, J. Y.; Choe, Y. J.; Kim, Y.; Rhim, H.; Lee, S. H.; Kim, J.; Joo,
D. J.; Lee, J. Y. Discovery of potent T-type calcium channel blocker.
Bioorg. Med. Chem. Lett. 2007, 17, 5740–5743.
(5) Bezprozvanny, I.; Tsien, R. W. Voltage-dependent blockade of diverse
2
+
types of voltage-gated Ca channels expressed in Xenopus oocytes
2
+
by the Ca
channel antagonist mibefradil (Ro 40-5967). Mol.
Pharmacol. 1995, 48, 540–549.
(
6) Moosmang, S.; Haider, N.; Bruderl, B.; Welling, A.; Hofmann, F.
Antihypertensive effects of the putative T-type calcium channel
antagonist mibefradil are mediated by the L-type calcium channel
Cav1.2. Circ. Res. 2006, 6, 105–110.
(
(
7) Merck in-house data.
8) Talley, E. M.; Cribbs, L. L.; Lee, J. H.; Daud, A.; Perez-Reyes, E.;
Bayliss, D. A. Differential distribution of three members of a gene
family encoding low voltage-activated (T-type) calcium channels.
J. Neurosci. 1999, 19, 1895–1911.
9) Nelson, M. T.; Todorovic, S. M.; Perez-Reyes, E. The role of T-type
calcium channels in epilepsy and pain. Curr. Pharm. Des. 2006, 12,
(27) Shipe, W. D.; Barrow, J. C.; Yang, Z.-Q.; Lindsley, C. W.; Yang,
F. V.; Schlegel, K. S.; Shu, Y.; Rittle, K. E.; Bock, M. G.; Hartman,
G. D.; Tang, C.; Ballard, J. E.; Kuo, Y.; Adarayan, E. D.; Prueksari-
tanont, T.; Zrada, M. M.; Uebele, V. N.; Nuss, C. E.; Connolly, T. M.;
Doran, S. M.; Fox, S. V.; Kraus, R. L.; Marino, M. J.; Graufelds,
V. K.; Vargas, H. M.; Bunting, P. B.; Hasbun-Manning, M.; Evans,
(
2
189–2197.
(
10) Meldrum, B. S.; Rogawski, M. A. Molecular targets for antiepileptic
drug development. Neurotherapeutics 2007, 4, 18–61.