Page 5 of 6
Journal of the American Chemical Society
We have used computational docking to attempt to understand the
Notes
1
2
3
4
5
6
7
8
molecular basis for the observation that introduction of nucleobase
1 into position 24 or 26 of RRM1 enhanced DNA binding but the
presence of 1 in both positions significantly diminished binding.
Figure 4A shows one of the most energetically favorable docked
structures. The Arg26 guanidine moiety is within H-bonding dis-
tance to O6 and N2 of G14 of the i-motif DNA (as well as O2 of C-
13), while the His24 imidazole N is more than 7 Å from all DNA
bases (and ~8 Å from N2 of G14). Another very favorable docked
structure is shown in Figure 4B. The His24 imidazole N is ~4 Å
from O6 of G14, while Arg26 has been displaced close to the DNA
backbone. Thus, in these energetically favorable models, either
His24 or Arg26 (but not necessarily both) can be H-bonded to G14.
This is consistent with the experimental observations noted in Ta-
ble 1 when 1 was introduced in lieu of one or both of these amino
acids.
The authors declare no competing financial interests.
ACKNOWLEDGMENT
This study was supported by Grant GM 103861 from the National
Institute of General Medical Sciences, National Institutes of
Health. Z. L. thanks the NFSC-joint fund for talent cultivation in
Henan Province for a fellowship (U1404206).
REFERENCES
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1) Brennan, R. G.; Matthews, B. W. J. Biol. Chem. 1989, 264, 1903.
(2) (a) Landschulz,W. H.; Johnson, P. F.; McKnight, S. L. Science 1988,
240, 1759. (b) Vinson, C. R.; Sigler, P. B.; McKnight, S. L. Science 1989,
246, 911. (c) Pavletich, N. P.; Pabo, C. O. Science 1991, 252, 809.
(3) (a) Miyanishi, H.; Takahashi T.; Mihara, H. Bioconjugate Chem. 2004,
15, 694. (b) Takahashi, T., Yana, D., Mihara, H. ChemBioChem 2006, 7,
729. (c) Watanabe, S.; Tomizaki, K.; Takahashi, T.; Usui, K.; Kajikawa K.;
Mihara, H. Peptide Sci. 2007, 88, 131.
(4) (a) Diederichsen, U. Angew. Chem. Int. Ed. Engl. 1996, 35, 445. (b)
Chakraborty, P.; Diederichsen, U. Chem. Eur J. 2005, 11, 3207.
(5) Talukder, P.; Dedkova, L. M.; Ellington, A. D.; Yakovchuk, P.; Lim,
J.; Anslyn, E. V. Hecht, S. M. Bioorg. Med. Chem. 2016, 24, 4177. For the
purposes of this study, we define nucleobase amino acids as species having
at least one N atom within the aromatic substituent.
(6) (a) Kang, H.-J.; Kendrick, S.; Hecht S. M.; Hurley, L. H. J. Am. Chem.
Soc. 2014, 136, 4172. (b) Talukder, P.; Chen, S.; Roy, B.; Yakovchuk, P.;
Spiering, M. M.; Alam, M. P.; Madathil, M. M.; Bhattacharya, C.; Benkovic
S. J.; Hecht, S. M. Biochemistry, 2015, 54, 7457. (c) Roy, B.; Talukder, P.;
Kang, H.-J.; Tsuen, S. S.; Alam, M. P.; Hurley, L. H.; Hecht, S. M. J. Am.
Chem. Soc. 2016, 138, 10950.
It seems logical to anticipate that optimizing selective protein−nu-
cleic acid interactions will require the use of multiple nucleobase
amino acids in a single protein. In this regard a few observations
seem worthy of note. First, because modified nucleobase amino ac-
ids such as 1 and 416 appear to be incorporated with greater effi-
ciency than “canonical” nucleobase amino acids such as 2 and 3,
once fully optimized they should facilitate the introduction of mul-
tiple nucleobase amino acids into a protein. Second, our recent de-
velopment of modified ribosomes capable of incorporating dipep-
tides into proteins22 may enable the introduction of two contiguous
nucleobase amino acids in a single ribosomal event. The finding
(Table 1) that incorporation of amino acid 1 both into positions 24
and 26 of RRM1 substantially reduced the affinity of this protein
for the i-motif (BC50 130 ± 28 vs 96 ± 13 nM), as compared with
the increases in affinity observed following either of the same sub-
stitutions made singly, indicates that developing nucleic acid bind-
ing proteins that function with favorable affinity and selectivity will
demand creative new strategies, and that the full repertoire of inter-
actions noted for nucleic acid interactions, including stacking, van
der Waals and electrostatic interactions, may find utility in addition
to the apparent H-bonding putatively involved in the current study.
Finally, while the increases in protein affinity observed in the pre-
sent study were not large, they may arguably be sufficient in many
cases to alter the specificity for their nucleic acid target. The intro-
duction of multiple nucleobase amino acids into a single protein
should also conduce to that outcome. Presumably, increasing affin-
ity would at some point negatively impact biological function.
(7) Gao, R.; Zhang, Y.; Dedkova, L.; Choudhury, A. K.; Rahier, N. J.;
Hecht, S. M. Biochemistry 2006, 45, 8402.
(8) (a) Zhang, F.; Zhang, S.; Duan, X. F. Org Lett. 2012, 14, 5618. (b)
Jones, P. A.; Wilson, I.; Morisson-IveSon, V.; Jones, C.; Woodcraft, J.;
Jackson, A.; Wynn, D. International Patent WO 106564 A2, 2009. (c)
Schöllkopf, U.; Groth, U.; Westphalen, K. O.; Deng, C. Z. Synthesis 1981,
969. (d) Talukder, P.; Chen, S. X.; Arce, P. M.; Hecht, S. M. Org Lett. 2014,
16, 556.
(9) Robertson, S. A.; Noren, C. J.; Anthony-Cahill, S. J.; Griffith, M. C.;
Schultz, P. G. Nucleic Acids Res. 1989, 17, 9649.
(10) Roy, A.; Kucukural, A.; Zhang, Y. Nat. Prot. 2010, 5, 725.
(11) Hwang, S.; Gou, Z.; Kuznetsov, I. B. Bioinformatics 2007, 23, 634.
(12) Marchler-Bauer, A.; Derbyshire, M. K.; Gonzales, N. R.; Lu, S.,
Chitsaz, F.; Geer, L. Y.; Geer, R. C.; He, J.; Gwadz, M.; Hurwitz, D.
I.; Lanczycki, C. J.; Lu, F.; Marchler, G. H.; Song, J. S.; Thanki, N.; Wang,
Z.; Yamashita, R. A.; Zhang, D.; Zheng, C.; Bryant, S. H. Nucleic Acids
Res. 2015, 43, (database issue), D222.
(13) Zhang, W.; Zeng, F.; Liu, Y.; Zhao, Y.; Lv, H.; Niu, L.; Teng, M.; Li,
X. J. Biol. Chem. 2013, 288, 22636.
(14) These two residues correspond to His 74 and Arg 76 in hnRNP LL.
A summary of potential DNA interactive residues in RRM1 is summarized
in the Supporting Information (SI) Figure S1.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures for the synthesis and characterization of
the pdCpA derivatives of 1 and 4, for the synthesis and biochemical
evaluation of modified RRM1s, and the EMSA data for the pro-
tein−DNA binding experiments.
(15) Zhang, Y. BMC Bioinformatics 2008, 9, 40.
(16) The incorporation of nucleobase amino acid 4 into positions 24 and
26 was carried out in a separate experiment; the suppression yields were 61
and 48%, respectively (SI, Figure S2).
(17) Kendrick, S.; Akiyama, Y.; Hecht, S.M.; Hurley, L.H. J. Am. Chem.
Soc. 2009, 131, 17667.
(18) The assay was optimized using wild-type RRM1 elaborated in E. coli
(SI, Figures S5 and S6). Wild-type RRM1 prepared in vitro had an affinity
for the i-motif DNA quite similar to the sample isolated from E. coli (SI,
Figure S6).
(19) For another possible reason for the behavior of RRM1 1-24 Arg26
see: Hildbrand, S.; Blaser, A.; Parel, S. P.; Leumann, C. J. J. Am. Chem.
Soc. 1997, 119, 5499.
(20) Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. Bioinformatics 2006,
22, 195.
(21) Dominguez, C.; Boelens, R.; Bonvin, A. M. J. Am. Chem. Soc. 2003,
125, 1731.
(22) Maini, R.; Dedkova, L. M.; Paul, R.; Madathil, M. M.; Roy Chow-
dhury, S.; Chen, S.; Hecht, S. M. J. Am. Chem. Soc. 2015, 137, 11206.
AUTHOR INFORMATION
Corresponding Authors
(480) 965-0038.
*Email: larisa dedkova@asu.edu. Phone: (480) 965-8248. Fax:
(480) 965-0038
Present Addresses
‡Z.L.: High & New Technology Research Center, Henan Academy
of Sciences, Zhengzhou, 450002, P. R. China.
Author Contributions
†X.B. and P.T. contributed equally.
ACS Paragon Plus Environment